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ABSTRACT: Diseases often cooccur in individuals more often than expected by chance, and may be explained by shared
underlying genetic etiology. A common approach to genetic overlap analyses is to use summary genome-wide association
study data to identify single-nucleotide polymorphisms (SNPs) that are associated with multiple traits at a selected P-
value threshold. However, P-values do not account for differences in power, whereas Bayes’ factors (BFs) do, and may
be approximated using summary statistics. We use simulation studies to compare the power of frequentist and Bayesian
approaches with overlap analyses, and to decide on appropriate thresholds for comparison between the two methods. It is
empirically illustrated that BFs have the advantage over P-values of a decreasing type I error rate as study size increases
for single-disease associations. Consequently, the overlap analysis of traits from different-sized studies encounters issues in
fair P-value threshold selection, whereas BFs are adjusted automatically. Extensive simulations show that Bayesian overlap
analyses tend to have higher power than those that assess association strength with P-values, particularly in low-power
scenarios. Calibration tables between BFs and P-values are provided for a range of sample sizes, as well as an approximation
approach for sample sizes that are not in the calibration table. Although P-values are sometimes thought more intuitive, these
tables assist in removing the opaqueness of Bayesian thresholds and may also be used in the selection of a BF threshold to
meet a certain type I error rate. An application of our methods is used to identify variants associated with both obesity and
osteoarthritis.
Genet Epidemiol 39:624–634, 2015. Published 2015 Wiley Periodicals, Inc.∗
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Introduction

Multiple health disorders may afflict an individual at any
given time, and several such disorders frequently cooccur
more often than expected by chance. In contrast, certain
pairs of disorders are rarely observed in the same individual,
such that the presence of one disease appears to reduce the
risk of developing the other. The cooccurrence of complex
disorders with a genetic component significantly more, or
significantly less, frequently than expected by chance sug-
gests that there might be shared genetic variants that pre-
dispose to multiple disorders, or that protect against some
disorders while predisposing to others. For instance, there is
an increased osteoarthritis (OA) risk of 1.4–1.9 in the obe-
sity class (body mass index (BMI) > 28 kg/m2) [Wilkin and
Voss, 2005], and a genetic overlap between OA and obesity
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has been identified and replicated at FTO [Elliott et al., 2012;
Panoutsopoulou et al., 2013]. In another example, individu-
als with schizophrenia have a fourfold higher prevalence of
type 2 diabetes (20%), compared with the general popula-
tion. Though some of this increased diabetes risk could be
due to drug effects [Lin and Shuldiner, 2010; Salviato Balbão
et al., 2014], there is also evidence of shared genetic etiology
[Lin and Shuldiner, 2010].

Current Approaches and Limitations

Often summary statistics, rather than raw data, are avail-
able when data are shared from multiple studies, and associ-
ation is often assessed by P-value. In planned genetic overlap
analyses of two traits, there are a few approaches that have
been put to use to identify variants and/or genes associated
with both traits. One method is to check if any of the associ-
ated variants for one trait are associated with the other trait
or fall within its candidate genes. For example, in a genome-
wide association study (GWAS) of Crohn’s disease, associated
single-nucleotide polymorphisms (SNPs) were identified in
the same intron of CDKAL1 that harbors SNPs associated
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with type 2 diabetes, and it was shown that the associated
alleles for the two diseases are not correlated [Barrett et al.,
2008].

Alternatively, the results from the marginal GWAS of each
trait may be analyzed in parallel to identify overlapping
associated variants based on a P-value significance threshold
selected for both studies. In order to test whether the number
of significant variants for both traits is more than expected
by chance, approximate independence among the SNPs is
required so that contingency table methods may be applied.
A set of SNPs with low linkage disequilibrium (LD) can be
formed by LD pruning. However, when deciding between
one of two SNPs in LD to remove, it is usually preferred to
retain the SNP with stronger evidence of association with a
trait. As there are two traits, this is complicated by the restric-
tion that the same set of pruned SNPs is required for both
traits. That is, only one measure of association strength may
be considered when deciding the removal of one of two SNPs
in LD.

In an overlap analysis of osteoarthritis with BMI and height,
SNPs were pruned based on the association metrics of the trait
with the larger sample size [Elliott et al., 2012]. A caveat of
this approach is the lack of symmetry, because the pruned set
of SNPs will differ depending on the trait selected for prun-
ing. A contingency table comparing the number of signifi-
cant/nonsignificant variants against trait 1/trait 2 was then
used to test for an excess of signals for both traits [Elliott
et al., 2012]. However, this approach tests for an enrichment
of signals for the two traits and considers the information
at each SNP independently between the two traits without
simultaneously taking into account the SNP association in-
formation for both traits; that is, the fact that the data for
traits 1 and 2 occur as a pair at each SNP.

Overlapping loci between schizophrenia and bipolar dis-
order, between prostate cancer and cardiovascular disease
risk factors (e.g., blood lipids), as well as between systolic
blood pressure and each of several associated phenotypes,
were identified by testing individual SNPs using GWAS sum-
mary statistics and a genetic pleiotropy-informed conditional
false discovery rate (FDR) method and conjunction FDR
[Andreassen et al., 2013, 2014a,b]. Both the conditional FDR
and conjunction FDR are in a Bayesian framework, but rely
on probabilities that arise from comparisons of marginal P-
values for the two traits at a given SNP.

A subset-based approach was proposed for the meta-
analysis of related but distinct traits and has been applied
to identify shared risk loci among different cancer types
[Bhattacharjee et al., 2012; Wang et al., 2014]. This method
evaluated evidence of association at an SNP for any given sub-
set of the studies by combining their weighted test statistics.
The approach allows for heterogeneity among the studies in
that some studies may have no effect, and is also applicable
to heterogeneous disease subtypes. However, this method is
more advantageous for more than two studies or traits. For
two studies or traits, the primary set of interest is the full set
of two studies rather than a subset of one of the two, and the
test statistic for the full set is essentially that from a pooled
analysis of the studies.

When P-values are used to assess variants for association
with two traits (each coming from a different study), any
power differences between the two studies are not accounted
for. In particular, P-values are influenced by the same factors
that affect power—namely, sample size and minor allele fre-
quency (MAF). Although for a fixed P-value threshold power
to detect a disease-associated variant increases with sample
size, the type I error rate remains the same as the P-value
threshold, irrespective of sample size.

Rather than focusing on P-values, a Bayesian approach
may be employed, which takes into account the power of the
study through the incorporation of the variance of the effect
estimate V in the calculation of the approximate Bayes’ factor
(ABF; discussed further in next section) [Wakefield, 2009].
In contrast to the P-value, the ABF depends on both the
usual Wald statistic (z2 = β̂2/V) and V, whereas the P-value
depends only on the Wald statistic. Therefore, because power
is affected by sample size, the ABFs from different study sizes
are comparable, whereas P-values do not account for the
differing powers of the tests. Bayesian approaches to analysis
are sometimes considered less appealing than P-values due
to their higher level of complexity, but the advantage of ABFs
being directly comparable across studies may be crucial when
studies of different powers are to be jointly analyzed.

To assist in performing comparisons between the frequen-
tist and Bayesian approaches, we have generated a reference
table of equivalent thresholds between the two approaches
for a range of sample sizes and parameter settings, which
acts as a point of reference between P-values and ABFs. This
calibration table was necessary in our comparisons of the
frequentist and Bayesian approaches for detecting variants
associated in two traits, and may also be of more general
use when comparing frequentist and Bayesian versions of a
method. In addition, the calibration table removes some of
the opaqueness of Bayesian thresholds by providing the false-
positive rate for a given Bayesian threshold or may assist in
deciding on an ABF threshold to satisfy a certain type I error.

Our primary interest is in the overlap analysis of traits
from two different GWAS, of differing sample size and power,
as such scenarios are most likely to benefit from an ABF
approach. We propose a method of overlap analysis when
only summary statistic data are available for both traits and,
in an extensive simulation study, compare the frequentist
and Bayesian approaches to testing for association at a single
SNP. In addition to identifying SNPs that have evidence of
association in both traits, we test for an excess of overlapping
associated SNPs beyond that expected by chance. The
proposed methods are applied to the overlap analysis of
obesity (Genetic Investigation of ANthropometric Traits
(GIANT) Consortium; Berndt et al. [2013]) and knee and/or
hip osteoarthritis (Arthritis Research UK Osteoarthritis
Genetics (arcOGEN) Consortium; arcOGEN Consortium
et al. [2012]).

Materials and Methods

In the identification of overlapping SNPs, no assumptions
of independence are needed at the SNP or sample level but
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more restrictive assumptions may be needed when testing for
an excess of overlapping signals. In testing for more overlap
than expected by chance, we assume that the traits have not
been measured on the same individuals, which is likely to
hold, because two different studies are of interest. Although
we assume independence between the individuals, such that
there is not any overlap between the control sets, we found
little difference in the results when there was a shared cohort
within the controls of our data application.

BF and an Approximation

In the case-control setting, each SNP is often tested for
association with the trait by fitting a logistic regression to
model the probability of disease for an individual as a func-
tion of the coded genotype xj, according to a genetic model.
For example, in a strict additive model xj = 0,1,2 minor alleles
are possessed by the individual at the SNP. Letting β denote
the effect estimate at a particular SNP, such that the odds
ratio OR = exp(β), the null hypothesis of no effect (H0: β = 0)
is compared with the alternative H1: β� =0. The BF compares
how likely the observed data are under the two models and is
defined by

BF =
Pr (data|H1)

Pr (data|H0)
,

such that larger BF values indicate more evidence in favor
of H1 over H0; if the data are equally probable under both
hypotheses then BF = 1 [Stephens and Balding, 2009].

Calculation of Pr(data|H1) requires specification of a prior
distribution for β under H1; this prior distribution reflects the
plausibility of the various effect values before observance of
the data. The probability under H1 may then be calculated by
integrating over all possible values of β, weighted according
to the prior distribution. A Normal distribution with mean
0 and variance W is often chosen as the prior distribution
for the effect β [Stephens and Balding, 2009]. Software pack-
ages such as SNPTEST [Marchini et al., 2007] and BIMBAM
[Servin and Stephens, 2007] are able to compute such BFs
with ease.

If a logistic regression model is fit to the data, then the sum-
mary genetic association data may be used to obtain ABFs,
regardless of availability of the phenotype and genotype data.
This approximation generally aligns with the calculations
output from SNPTEST and BIMBAM and has been shown
to be accurate in simulated case-control data with as little as
250 each of cases and controls [Wakefield, 2007].

Based on summary genetic association data from a regres-
sion (estimates of β̂ = log(ÔR), and V = Var(β̂)), for each
trait an ABF may be calculated at each variant:

ABF =

√
V

V + W
exp

{
W

V + W

Z 2

2

}
,

where Z = β̂ /
√

V, β̂ ∼ N(β, V), β ∼ N(0, W) and
N(μ,σ2) denotes that the random variable follows a Nor-
mal distribution with mean μ and variance σ2 [Wakefield,
2007, 2009]. In this formulation, W, the prior variance of β,

is the only parameter that requires specification. Various pos-
sibilities for W have been proposed in the logistic regression
framework of case-control studies, and a simple choice is for
W to be a constant value at each variant [Wakefield, 2009].
This constant value is determined based on selection of an
upper value ORU such that with low probability OR > ORU. A
widely used default value for the prior variance of the log-OR
in an additive model is W = 0.22 [Marchini et al., 2007], which
may be derived based on the assumption that with two-sided
prior probability of 0.05, OR > 1.48. In contrast to P-values,
large values of ABF are evidence against the null hypothesis
of no trait association at the variant.

Threshold Selection

The null hypothesis of no association at an SNP is rejected
if ABF > PO/R, where PO = π0/(1 – π0) is the prior odds
of no association, π0 is the prior probability that there is
no association at the SNP, and R = type II error cost/type
I error cost. The roles of π0 and R differ, as π0 influences
the number of significant associations, whereas R determines
the expected number of false discoveries and missed signals
[Wakefield, 2007]. In GWAS, a Bayesian threshold is based
on R = 1 and 1 – π0 (the prior probability of an association
existing) set to 10–4 – 10–6, so that a genome-wide threshold
for log10BF is between 4 and 6 [The Wellcome Trust Case
Control Consortium, 2007].

Values of R greater than 1 indicate that one is in “discovery
mode,” and the cost of failing to identify an associated variant
is higher than the cost of falsely detecting a null associated
variant. For instance, under R = 4, the cost of missing a true
signal is four times the cost of misidentifying a null variant as
associated. Therefore, when the objective is to obtain a list of
candidates for followup, rather than a definitive list of signals,
larger values of R are favored.

In overlap analyses, a less-stringent threshold may be con-
sidered, rather than requiring genome-wide significance to
be attained at a single variant for both traits. This favors a dis-
covery setting for detecting associations in both traits, which
can subsequently be validated in further replication studies.
In particular, the focus is on identifying new putative signals
for downstream validation, such that more false positives are
preferred over more false negatives. For example, in the over-
lap analysis of osteoarthritis with BMI and height, various
P-value thresholds were examined, with a focus on α = 10–3

[Elliott et al., 2012]. Likewise, we focus on π0 values of 0.99
and 0.999 to reflect that we are not searching for SNPs that
are genome-wide significant in both traits and values of R > 1
such that we are in “discovery mode”; genome-wide signifi-
cance would require setting π0 between 0.9999 and 0.999999
[The Wellcome Trust Case Control Consortium, 2007].

Bayesian Approach to Overlap Analysis

Although the proposed analysis may be extended to more
than two traits, for ease of exposition we focus on two traits.
For each SNP at which there are summary statistic data
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available for both traits, the ABF is calculated with respect
to each trait and then tested for association upon selection
of π0 and R. Approximate independence is needed among
the SNPs in order to rely on contingency table methods for
analysis of the distribution of SNPs with high/low ABF (ABF
above or below PO/R) over the two traits.

In the pruning of the SNPs according to both traits 1 and 2,
we create new association statistics ABF∗ and P∗ that reflect
the strength of evidence for association in both traits. At a
given SNP, let ABF1 and ABF2 be the respective ABFs for
traits 1 and 2, and let M be the maximum ABF observed at
any SNP, for either trait. A Bayesian association metric for
pruning may then be defined by

ABF ∗ = max (ABF 1, ABF 2)

+ M × I {ABF 1 > PO/R and ABF 2 > PO/R},
where I(E) is the indicator function, taking on value 1 when
event E = {ABF1 > PO/R and ABF2 > PO/R} holds and 0,
otherwise. When selecting between one of two SNPs in LD to
remove, the form of ABF∗ increases the chance of retaining an
SNP that has evidence of association with both traits, rather
than an SNP that has high evidence strength for one trait, but
little evidence for the other trait.

The analogous form for P-values takes a slightly different
form as follows:

P ∗ = min (P1, P2) – 1 × I {P1 < α and P2 < α},
where P1 and P2 are the respective P-values for traits 1 and
2, at a given SNP. Although P∗ is not a proper probability, it
serves the purpose of maximizing the retention of SNPs that
have sufficiently small P-values for both traits.

SNPs are then ordered by decreasing ABF∗ (or increasing
P∗) for the selected trait and any SNP within 500 kb of the
first SNP and in LD (r2 > 0.1) with it is pruned out. Remain-
ing SNPs are pruned out in a similar manner by continuing
through the list of ordered SNPs. This is carried out using the
clumping algorithm in PLINK version 1.07 [Purcell, 2009;
Purcell et al., 2007].

The ABF∗ and P∗ are only used for pruning the data so
that the SNPs are approximately independent, while simulta-
neously retaining SNPs that meet the significance threshold
for both traits. Examination of association concordance be-
tween the traits is based on the individual ABFs (ABF1 and
ABF2) and P-values (P1 and P2) of the studies. In addition,
as overlap SNPs are identified based on meeting the ABF (or
P-value) threshold for both traits, the direction of effect does
not influence the overlap detection and may be the same or
different among the traits.

Test for Overlap Enrichment

We propose to test for more overlap than expected by
chance between the genetic contributions to the two traits
by examining the concordance between the levels of associa-
tion evidence (high or low) at each SNP for the two traits. An
SNP is considered to have high association evidence with trait
k if ABFk > PO/R (referred to as high ABF) and low evidence

Table 1. Matched-pair contingency table for implementation of
McNemar’s test

Trait 1\Trait 2 High ABF (ABF > PO/R) Low ABF (ABF < PO/R)
High ABF (ABF > PO/R) n11 n10

Low ABF (ABF < PO/R) n01 n00

m

otherwise (low ABF). This amounts to testing for SNP con-
ditional independence between high (low) ABF of trait 1 and
high (low) ABF of trait 2, where the association within each
pair is conditional on the SNP. This is equivalent to testing
for equal marginal frequencies between high (low) ABF of
trait 1 and high (low) ABF of trait 2, as done by McNemar’s
mid-P test [Fagerland et al., 2013]. McNemar’s mid-P test
has been selected rather than McNemar’s exact test because it
has been shown that the mid-P test has excellent power and
only minor violations of significance level [Fagerland et al.,
2013]. McNemar’s test may be viewed as a paired version of
a chi-squared test.

The mid-P-value is calculated by constructing a matched-
pair contingency table (Table 1), based on the set of approxi-
mately independent SNPs.In this table, each SNP contributes
to one of the cells according to the strength of association
evidence for each trait, relative to the selected criteria (R,
π0). For example, n11 is the number of SNPs that have ABF
> PO/R for each of the traits 1 and 2, whereas n10 and n01

correspond to the counts of SNPs that are discordant with
respect to the traits and high/low ABF. A similar table may be
constructed for P-values based on significance criteria α. The
mid-P-value is given by

2 ×
min(n10,n01)∑

x10=0

f (x10|n) – f (min(n10, n01)|n) ,

where the summation component is the McNemar exact con-
ditional test one-sided P-value and n = n01 + n10, the total
number of discordant SNPs. This differs from the χ2 con-
tingency table analysis of Elliott et al. [2012], in which cells
of the table corresponded to combinations of traits 1 and 2
(rows) with high and low P-values (columns) and did not
account for concordance/discordance at SNPs. A flow chart
of the analysis steps proposed here is provided in Figure 1.

Threshold Calibration

Overlap analyses may be completed using either Bayesian
or frequentist approaches to measuring association signifi-
cance. However, there does not exist a correspondence be-
tween P-values and ABFs and a calibration between the two
sets of thresholds is required in order to compare the perfor-
mance of the approaches.

Because the Bayesian proportion of false positives (PFP)
changes with sample size, there is no simple correspondence
between thresholds from the two approaches. Thresholds for
the Bayesian and frequentist approaches may be calibrated
by matching the PFP resulting from each approach. PLINK
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Figure 1. Overlap analysis flow chart.

version 1.07 [Purcell, 2009; Purcell et al., 2007] is used to
simulate 5 million independent null SNPs from equal-sized
case-control samples. As overlapping associated variants are
to be identified within previous GWAS results, we focus on
variants with MAF >0.05.

For a single GWAS with n cases, a calibrated P-value
threshold α is equal to the PFP for the selected Bayesian
decision rule applied to null simulations with n cases. In
practice a single threshold is applied to both studies of
an overlap analysis, but a different calibrated α would be
needed for each study to meet the Bayesian type I error rate.
Therefore, we consider an upper α, αU, defined as the PFP
for the number of cases in the smaller study (less stringent for
larger study) and a lower α, αL, set as the PFP for the number
of cases in the larger study (more stringent for smaller study).
The lower α is applied to each study for overlap analysis, and
likewise for the upper α. Conceptually, there is simplicity in
applying the single ABF threshold to both studies, with an
automatic adjustment of type I error rate according to study
size. In contrast, the P-value threshold dictates the type I
error rate as identical, irrespective of sample size.

The Bayesian threshold is calculated under assumptions
of a prior association probability equal to 0.99 and 0.999,
and at various levels of cost ratios R, ranging from 1 to 20.
Ten different settings for equal-sized case-control samples
of size 2,000 each up to 100,000 each are considered in the
simulations (see Fig. 2 for increment details). The calibration

Figure 2. Type I error estimates for 5 million independent SNPs from
equal-sized case-control samples (size in legend) using a Bayesian
threshold with π 0 = 0.99 and varying R.

tables are based on 1:1 case-control ratios, which coincide
with the simulation setup for the power studies. We also
provide regression models, which may be used to extrapolate
from this table to obtain thresholds for sample sizes that are
not included in the table, as we illustrate for the power study
involving studies of 15,000 each of cases and controls.

As the PFP for a given sample size and Bayesian threshold
determines the analogous P-value threshold for a study
with a similar number of cases, we may extrapolate our
PFP estimates to an alternative sample size by turning to
regression. The type I error estimate may be approximated
by a regression model of the –log10(PFP) against a quadratic
function of log10(N), where N is the number of cases in
the study. QQ plots of the standardized residuals suggest
approximate normality, whereas plots comparing the fitted
–log10(PFP) values and –log10(PFP) estimates against
log10(N) suggest that the regression models appropriately fit
the data. Examples of these plots are given in supplementary
Figure S1 for R = 2, 15, and 20.

Although the calibration between approaches is based on a
1:1 case-control ratio, we found that there was little difference
in the results for case-control ratios of 1:1.5 and 1:2, as in the
arcOGEN and GIANT studies, respectively. In particular, the
calibration based on N each of cases and controls was found
to coincide well for case-control ratios of 1:1.5 or 1:2 and
N cases (numerical examples are provided in the Results).
Therefore, the calibrations provided are likely to be good
approximations for case-control studies where there may be
up to twice as many controls.
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Table 2. Type I error estimates using a Bayesian threshold log10θ, determined from π0 = 0.99 and varying R

N\R (log10θ) 1 (1.996) 2 (1.695) 4 (1.394) 5 (1.297) 10 (0.996) 12 (0.916) 15 (0.820) 20 (0.695)

2,000 3.33 × 10–4 7.38 × 10–4 1.64 × 10–3 2.14 × 10–3 4.94 × 10–3 6.16 × 10–3 8.11 × 10–3 1.15 × 10–2

3,000 3.10 × 10–4 6.74 × 10–4 1.49 × 10–3 1.93 × 10–3 4.37 × 10–3 5.43 × 10–3 7.03 × 10–3 9.94 × 10–3

4,000 2.77 × 10–4 6.24 × 10–4 1.38 × 10–3 1.78 × 10–3 3.96 × 10–3 4.92 × 10–3 6.37 × 10–3 8.90 × 10–3

5,000 2.77 × 10–4 5.84 × 10–4 1.27 × 10–3 1.63 × 10–3 3.60 × 10–3 4.42 × 10–3 5.74 × 10–3 8.04 × 10–3

8,000 2.34 × 10–4 5.05 × 10–4 1.07 × 10–3 1.36 × 10–3 2.94 × 10–3 3.60 × 10–3 4.66 × 10–3 6.46 × 10–3

10,000 2.16 × 10–4 4.51 × 10–4 9.56 × 10–4 1.23 × 10–3 2.66 × 10–3 3.26 × 10–3 4.19 × 10–3 5.82 × 10–3

15,000∗ 1.79 × 10–4 3.78 × 10–4 8.05 × 10–4 1.03 × 10–3 2.22 × 10–3 2.70 × 10–3 3.47 × 10–3 4.81 × 10–3

20,000 1.61 × 10–4 3.37 × 10–4 7.07 × 10–4 8.94 × 10–4 1.92 × 10–3 2.33 × 10–3 3.00 × 10–3 4.15 × 10–3

30,000 1.22 × 10–4 2.55 × 10–4 5.54 × 10–4 7.19 × 10–4 1.58 × 10–3 1.93 × 10–3 2.47 × 10–3 3.39 × 10–3

50,000 9.62 × 10–5 2.04 × 10–4 4.44 × 10–4 5.71 × 10–4 1.22 × 10–3 1.49 × 10–3 1.90 × 10–3 2.59 × 10–3

100,000 6.72 × 10–5 1.39 × 10–4 3.05 × 10–4 3.79 × 10–4 8.19 × 10–4 9.96 × 10–4 1.27 × 10–3 1.73 × 10–3

Estimates are based on 5 million independent SNPs from equal-sized case-control samples, each of size N. Estimates at N = 15,000 are the result of a regression at each R value of
the PFP estimates against a quadratic of log10N.

Power Comparison

Power is compared between the frequentist and Bayesian
approaches to detect a single SNP that is associated with two
traits. The objective is to examine detection of overlap at a
single SNP by each approach, and how the powers change
with the MAF and effect sizes of the SNP in different studies
for various sample size combinations.

As in the threshold calibration simulations, power approx-
imations are based on 5 million independent SNPs. Various
combinations of study sizes for overlap analysis are consid-
ered, where study k has Nk each of cases and controls, and
the sizes considered are 5,000; 10,000; 15,000; 20,000; and
30,000. For notational convenience we assume N1 < N2. At a
shared causal variant, the MAF is either 0.1 or 0.2 and the OR
for each trait is set to each possible combination of OR pairs
involving 1.1 and/or 1.2. As the direction of effect does not
affect the level of association evidence, we only consider the
positive effect direction for both traits.

Bayesian thresholds are determined based on π0 = 0.99 or
0.999 and eight values of R ranging from 1 to 20; an SNP
is identified as associated with both traits if ABF > PO/R for
both traits and the proportion of such SNPs estimates the
power of overlap detection based on ABFs. P-value levels of
significance are selected for a given Bayesian decision rule
according to Table 2 and supplementary Table S1, based on
R, π0, and N1 (for upper α) or N2 (for lower α); the power
for upper α is approximated by the number of SNPs having
P-value <αU for both traits, while power for αL is defined in
a similar manner.

Description of Datasets

In the GIANT Extremes obesity meta-analysis, obesity class
I cases were defined as individuals who have BMI �30 kg/m2,
while controls have BMI <25 kg/m2. The arcOGEN data had
been imputed using the 1000 Genomes CEU haplotypes from
the 2010 interim release in NCBI build 37 (hg19) coordinates
[The 1000 Genomes Project Consortium, 2010], whereas GI-
ANT made use of the haplotypes from the Phase II HapMap
CEU population (build 36) [The International HapMap
Consortium, 2003]. Due to both studies containing the 1958
Birth Cohort among the control samples, this cohort was

excluded from the GIANT meta-analysis. We then used the
LiftOver tool (http://genome.sph.umich.edu/wiki/LiftOver)
in order to bring the GIANT data to build 37.

The GIANT study excluding the 1958 Birth Cohort consists
of 32,142 cases and 64,461 controls, whereas arcOGEN has
7,410 cases, and 11,009 controls. There were 2,087,589 SNPs
present in both datasets that had MAF >0.05 in the 1000
Genomes CEU population. After LD pruning based on the
association metric described in Materials and Methods, the
number of SNPs included in the overlap analysis ranged from
88,980 to 91,122, depending on the threshold settings.

Results

Simulations: Threshold Calibration

Here, we empirically illustrate in single-disease associations
that BFs have the advantage over P-values of a decreasing
PFP as study size increases, whereas for P-values the PFP
fluctuates near the P-value threshold α regardless of study
size (as expected). The PFP at various R values under π0 =

0.99 is compared in Figure 2; Table 2 and supplementary
Table S1 provide these type I error estimates under π0 = 0.99
and π0 = 0.999, respectively. There is a general trend of a
0.7-fold increase in the exponent of the type I error estimates
between samples having cases and controls each of size 2,000
and those having 100,000 for each.

To put these PFPs into perspective, we focus on the sim-
ulation results for case-control studies consisting of 8,000
each and 30,000 each, which are respectively comparable to
the arcOGEN and GIANT (excluding 1958 Birth Cohort)
studies, as described in Materials and Methods. For exam-
ple, when π0 = 0.99, R = 4, the type I error estimates for
8,000 each of cases and controls and for an arcOGEN-sized
study are 1.07 × 10–3 (Table 2) and 1.01 × 10–3, respectively.
Likewise, at the same Bayesian threshold settings the PFPs
for case-control samples of 30,000 each and for a GIANT
(excluding 1958 Birth Cohort)-sized study are 5.54 × 10–4

(Table 2) and 4.62 × 10–4, respectively. Upon examination
of Table 2 and supplementary Table S1, it is apparent that
for any R setting at either π0 = 0.99 or 0.999, the Bayesian
type I error estimate based on 8,000 cases is twice that of the
30,000 cases. For instance, at π0 = 0.99, R = 2, the PFPs are
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Figure 3. Power comparison for overlap analysis of two studies for various scenarios. (a) Study 1 has 5,000 each of cases and controls, whereas
study 2 has 10,000 each. The causal SNP has MAF 0.1 and in studies 1 and 2, OR = 1.1 and OR = 1.2, respectively. (b) Study 1 has 10,000 each of
cases and controls, whereas study 2 has 20,000 each. The causal SNP has MAF 0.1 and OR = 1.1 in both studies. (c) Study 1 has 5,000 each of cases
and controls, whereas study 2 has 20,000 each. The causal SNP has MAF 0.1 and OR = 1.2 in both studies. (d) Study 1 has 10,000 each of cases and
controls, whereas study 2 has 30,000 each. The causal SNP has MAF 0.2 and OR = 1.1 in both studies.

5.05 × 10–4 and 2.55 × 10–4 for case samples of size 8,000
and 30,000, respectively (Table 2).

When the number of cases is different than the settings
considered in the simulations, we use a regression model
to determine the analogous P-value threshold for a given
Bayesian threshold. The general regression for each pa-
rameter setting of R and π0 takes the form –log10(PFP ) =

β0 + β1log10N + β2(log10N)2 , where N is the number of cases
in the study, and occasionally the linear term is removed from
the final fitted model, as it is not statistically significant at
level 0.05. The coefficient estimates and their standard errors
from each of the fitted models are provided in supplemen-
tary Table S2, for π0 = 0.99, 0.999 and a range of R values. An
estimate of –log10(PFP) for specific values of π0 and R may
then be found for a certain number of cases N by referring
to the appropriate fitted model and using the coefficient es-
timates from supplementary Table S2. This is illustrated for
case-control samples of 15,000 each, and PFP estimates at

π0 = 0.99 and π0 = 0.999, for a range of cost ratios R, which
are provided in Table 2 and supplementary Table S1.

Simulations: Power Comparison

Power is compared to detect a single SNP that is associated
with two traits, and it is clear that the maximum power is
bounded by the minimum power between the two marginal
studies. Representative examples from the power compar-
isons are displayed in Figure 3, for which detailed results may
be found in supplementary Table S3. In addition, the results
for a variety of simulation scenarios are given for thresholds
based on R = 20 and π0 = 0.99 in supplementary Table S5. The
Bayesian approach consistently attains a higher power than
the frequentist method based on the lower P-value threshold
(from larger study), which is too stringent for the smaller-
sized study (see Fig. 3 and supplementary Tables S3–S5).
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Despite the upper P-value threshold (from smaller study), up-
per α, being slightly lenient for the larger study, the Bayesian
approach tends to attain at least the same power (Fig. 3a–d,
supplementary Table S3a–d).

In general, scenarios that tend to be underpowered (i.e., low
MAF and small effect size) display a higher power gain (up
to 4%) for the ABF implementation over the upper P-value
threshold (e.g., MAF 0.1; Fig. 3a and b, supplementary Tables
S3a and b) and S4), whereas those that are high-powered
perform equally well (e.g., MAF 0.2; Fig. 3d, supplementary
Tables S3d and S4). Also, the Bayesian power gain tends to
increase with the ratio of the number of cases between the
studies (or ratio of cases and controls, because we assume a
1:1 case-control ratio). At lower MAF causal variants (e.g.,
MAF 0.1), the P-value approach with threshold αU either
has a lower power than the ABF approach or is greater by a
negligible amount (<0.5%; see Fig. 3a–c and supplementary
Tables S3a–c and S4).

Among the scenarios considered, the one setting that dis-
plays a slight power gain (�2%) for the frequentist over
the Bayesian is in a high-power setting (MAF 0.2) in which
the effect size is larger in the smaller sample (OR 1.2 for
smaller sample, OR 1.1 for larger sample); see supplementary
Table S5. However, this gain in using the upper α approach is
only observed when the smaller study is at most 5,000 each
and the larger study has 10,000 each, and the gain dissipates
with sample sizes beyond 15,000 (supplementary Table S5).

As a single overlap SNP is assumed in each of the 5 million
replications, among these true association signals detected
by ABFs or P-values (the set of SNPs denoted ABF ∪ αU) we
compare the proportion of signals detected by ABFs that are
not identified by P-values and vice versa. These conditional
proportions indicate that despite similar power differences
between ABF and P-value approaches, the higher-powered
method does not catch a similarly larger proportion of vari-
ants than the other; when the ABF approach is higher pow-
ered, conditional proportions for ABF-only detections are
larger than conditional proportions for P-value-only detec-
tions when P-values have higher power than ABFs.

For two studies consisting of equal-sized case-control sam-
ples of sizes 10,000 each and 20,000 each, with a shared causal
variant having MAF 0.1 and OR 1.1, ABFs identify approxi-
mately 99% of the variants detected by either method, based
on π0 = 0.99 or 0.999, whereas P-values identify 92–93% of
the variants when π0 = 0.99 and as little as 89.4% when R = 2,
π0 = 0.999 (π0 = 0.99 results in supplementary Table S6; π0 =

0.999 not shown). For example, at R = 2, π0 = 0.99 the power
advantage with ABFs is a 1.9% increase (supplementary
Table S3), but 8.4% (97,304/1,160,779) of the detected signals
are found only by ABFs, whereas the reverse proportion is
0.26% for signals detected only by P-values (supplementary
Table S6).

In contrast, when the causal variant has MAF 0.2 in studies
consisting of 5,000 each of cases and controls (OR 1.2) and
10,000 each (OR 1.1), the P-value approach has a general
power gain of 2% over ABFs (supplementary Table S5),
and the conditional proportions indicate that P-values
only detect 2–4% more variants than ABFs (supplementary

Table S6). For instance, at R = 2, π0 = 0.99, the P-value
approach is higher powered by 1.9% (supplementary
Table S5), yet 3% (100,566/3,308,889) of the identified
signals are found only by P-values, and the complementary
proportion for ABF-only-detected signals is 0.17% (sup-
plementary Table S6). Similar behavior is observed for the
overlap analysis of studies consisting of 5,000 each and
15,000 each, with the proportion of variants detected only by
P-values ranging from 1% to 3% (supplementary Table S6).

Application: Obesity and Osteoarthritis

The proposed methods were applied to the overlap analy-
sis of obesity (GIANT Extremes meta-analysis [Berndt et al.,
2013]) and knee and/or hip osteoarthritis (arcOGEN GWAS
[arcOGEN Consortium et al., 2012]) to identify SNPs asso-
ciated with both traits, as well as test for an excess of more
shared signals than expected by chance. This was completed
using summary statistics from the original GIANT meta-
analysis, as well as those based on the exclusion of the 1958
Birth Cohort. As the two sets of results are quite similar, we
report only those based on the latter, which did not encounter
the issue of overlapping control sets between the arcOGEN
and GIANT datasets.

Concordance between the full GIANT study and that with
the exclusion of the 1958 Birth Cohort is near 0.99, indicat-
ing that the reduction in sample size has little impact on this
large meta-analysis. Specifically, in comparing all SNPs with
MAF >0.05, the Pearson correlation coefficients for log10ABF
and –log10(P-value) are 0.991 and 0.988, respectively, whereas
the respective measures are 0.996 and 0.995 when the con-
cordance is measured for the set of common SNPs with a
P-value <0.01 in the full GIANT meta-analysis.

Based on the sample sizes of the GIANT study excluding
the 1958 Birth Cohort and of the arcOGEN study, type I
error estimates for the overlap analysis were obtained via
a simulation study of 5 million independent SNPs and are
compared in Figure 4 for the set of Bayesian decision rules
with π0 = 0.99. As in the examination of type I error to detect
an association at a single variant in a single study, the marginal
type I error estimate for the Bayesian approach is smaller for
the larger of the two studies.

The sets of SNPs identified by each method are not always
overlapping and additional signals are often in already de-
tected genes. As pruning was performed separately for ABFs
and P-values, within the merged list of 80 overlap SNPs iden-
tified by ABFs (π0 = 0.99, R = 20) and/or P-values (0.0065),
there were 15 pairs of SNPs in the same LD clump (r2 >0.1
and within 500 kb). The level of LD was then determined for
each pair of such SNPs via the software SNAP (SNP Annota-
tion and Proxy Search [Johnson et al., 2008]). As the lowest
LD measurement was 0.57 for these pairs, the SNP with the
smaller ABF was removed from the pair, resulting in a list of
65 approximately independent SNPs.

The top 20 independent signals that have been identified
by each method are provided in Table 3, together with the
assigned rank from each method, and the nearest gene. Genes
that have previously been identified as containing SNPs that
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Figure 4. Overlap type I error estimates for 5 million independent
SNPs from studies of the same size as arcOGEN and GIANT (excluding
1958 Birth Cohort).

are genome-wide significantly associated with obesity-related
phenotypes (Ensembl; http://www.ensembl.org/index.html)
are labeled with a double asterisk in Table 3, whereas those
that have been observed as highly significant (P-value < 9 ×
10–5) have a single asterisk.

For both ABFs and P-values, the strongest evidence of an
overlap association with both obesity and osteoarthritis is
a variant in FTO, which is unequivocally associated with
adiposity [Fawcett and Barroso, 2010]. This variant is also

associated with OA, as it is in high LD with both index SNPs
in FTO that had been identified by Elliott et al. [2012] (r2 =

0.838 with rs12149832) and Panoutsopoulou et al. [2013] (r2

= 0.605 with rs8044769), suggesting that they are part of the
same signal. Furthermore, two additional independent FTO
variants are identified as associated with both obesity and
OA, and both variants are ranked higher by ABFs rather than
P-values (see Table 3).

For the Bayesian and frequentist approaches, there is 80%
agreement in the variants identified within the top five sig-
nals, as well as within the top 10 and 20 signals. Among
the top 20 ABF signals, half are within/near genes known to
have prior genome-wide significant associations with obesity,
BMI, and/or weight, while the P-value approach assigns rank
29 to one of these signals (rs13107325 in SLC39A8/ZIP8, a
zinc transporter).

We also tested if the number of detected overlap SNPs
at various thresholds is more than expected by chance, and
display these counts together with their McNemar mid-P-
values in Table 4 (π0 = 0.99) and supplementary Table S3
(π0 = 0.999). When π0 = 0.99, there is a clear trend of more
significant P-values for the ABF analysis route, whereas the
frequentist route counts are not considered to be different
from chance at significance level 0.05 at R = 1 for both P-
value thresholds, as well as at R = 2 and 4 for the lower α

threshold.
For a given set of threshold settings (αL, log10θ, αU), where

θ = PO/R, there is a tendency for an ordering of the counts
of identified overlap variants with the number based on ABF
strength being between those based on each of the two P-
value thresholds (Table 4). For example, when π0 = 0.99 and
R = 10, so that log10θ = 0.996, there are nine overlapping vari-
ants identified. This falls between the counts of overlapping

Table 3. Top 20 independent signals by Bayesian and frequentist assessment, ranked by each of the ABF and P-value approaches

ABF rank P-value rank Chromosome SNP rsid Min. ABF Max. P-value Nearest gene

1 1 16 rs7185735 2.741 3.20 × 10–5 FTO∗∗

2 2 2 rs7607584 1.899 3.82 × 10–4 LRP1B∗∗

3 4 8 rs11986122 1.166 1.63 × 10–3 MSRA
4 5 1 rs1834527 1.111 1.83 × 10–3 NEGR1∗∗

5 7 15 rs11853080 1.088 2.01 × 10–3 ACSBG1∗

6 15 16 rs17218700 1.034 3.28 × 10–3 FTO∗∗

7 3 3 rs1355782 1.004 1.44 × 10–3 CPNE4∗∗

8 9 6 rs4714924 0.992 2.47 × 10–3 RCAN2
9 12 16 rs3848299 0.990 2.91 × 10–3 FTO∗∗

10 10 8 rs6601560 0.981 2.49 × 10–3 XKR6
11 29 4 rs13107325 0.969 4.41 × 10–3 SLC39A8/ZIP8∗∗

12 18 1 rs6425451 0.925 3.41 × 10–3 SEC16B∗∗

13 6 3 rs17530358 0.911 1.90 × 10–3 SRGAP3∗∗

14 16 20 rs6063765 0.909 3.29 × 10–3 ZFP64
15 14 6 rs655370 0.900 3.05 × 10–3 RGS17∗

16 61 3 rs3732869 0.889 7.28 × 10–3 RASA2
17 20 15 rs12441823 0.888 3.65 × 10–3 MAP2K5∗∗

18 19 11 rs4514364 0.871 3.55 × 10–3 LGR4
19 31 3 rs6788477 0.846 4.75 × 10–3 –
20 21 22 rs5995843 0.842 3.71 × 10–3 TNRC6B
21 8 15 rs8024948 0.835 2.34 × 10–3 CHSY1
28 11 6 rs2395754 0.772 2.50 × 10–3 OARD1, APOBEC2
43 13 20 rs6072602 0.703 2.98 × 10–3 PTPRT∗

47 17 4 rs17789621 0.671 3.35 × 10–3 HERC6

Also provided, are the minimum ABF and maximum P-value between the two traits at each SNP. Genes with prior genome-wide significant associations (P < 5 × 10–8) with
obesity, BMI, and/or weight are denoted by a double asterisk (∗∗), whereas those with previous highly significant associations (P < 9 × 10–5) are denoted by a single asterisk (∗).
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Table 4. Number of overlap variants identified by the ABF (log10θ threshold; θ = PO/R) at various R values with π0 = 0.99 and the
corresponding lower and upper P-value thresholds, based on 30,000 and 8,000 cases, respectively

ABF Lower α Upper α

R
log10θ

threshold
Number detected

(McNemar mid-P-value)
αL threshold
(N = 30,000)

Number detected
(McNemar mid-P-value)

αU threshold
(N = 8000)

Number detected
(McNemar mid-P-value)

1 1.996 2 (1.06 × 10–3) 1.20 × 10–4 2 (1.53 × 10–1) 2.40 × 10–4 2 (6.95 × 10–1)
2 1.695 2 (4.28 × 10–10) 2.50 × 10–4 2 (6.98 × 10–1) 5.10 × 10–4 2 (3.55 × 10–2)
4 1.394 3 (4.20 × 10–25) 5.50 × 10–4 2 (6.38 × 10–2) 1.10 × 10–3 3 (2.11 × 10–6)
5 1.297 3 (7.89 × 10–34) 7.20 × 10–4 2 (3.37 × 10–2) 1.40 × 10–3 4 (3.22 × 10–9)
10 0.996 9 (1.16 × 10–82) 1.60 × 10–3 6 (1.92 × 10–11) 3.00 × 10–3 15 (2.22 × 10–21)
12 0.916 15 (2.77 × 10–97) 1.90 × 10–3 7 (1.90 × 10–12) 3.60 × 10–3 23 (5.75 × 10–29)
15 0.820 25 (5.77 × 10–121) 2.50 × 10–3 12 (1.86 × 10–18) 4.70 × 10–3 31 (3.63 × 10–35)
20 0.695 45 (1.95 × 10–157) 3.40 × 10–3 19 (9.24 × 10–26) 6.50 × 10–3 59 (1.95 × 10–44)

The McNemar P-value follows the counts of detected overlap variants.

variants identified by the corresponding P-value thresholds:
αL = 0.0016 and αU = 0.003, respectively, detect 6 and 15
shared associations.

Discussion

The use of BFs, rather than P-values, allows an automatic
adjustment of smaller type I error rate for larger samples
(higher powered tests) for a fixed ABF threshold; for a fixed
P-value threshold, tests based on P-values have identical type
I error rates regardless of sample size (and power of the test).
In the overlap analysis of two studies with different powers,
this ABF approach simplifies the selection of a threshold for
use in both studies, rather than choosing a P-value threshold
that is either too lenient for the larger study or too strict for
the smaller study.

For the detection of variants associated with two traits, we
made extensive comparisons between association strength
assessed by BFs and by P-values. These evaluations focus on
identifying shared associations at the SNP level irrespective
of any direction of effect. In an overlap analysis of studies
consisting of different sample sizes, the Bayesian approach
had a consistent power advantage over the more stringent
P-value threshold (calibrated for larger sample), and a ten-
dency to attain at least the power of the more lenient P-value
threshold (calibrated for smaller sample).

We provide a calibration table between ABFs and P-values
for a range of sample sizes, as well as a simple means of
estimating a P-value threshold coinciding with a particular
Bayesian threshold rule (π0, R) for a certain sample size.
As BFs have less intuition behind them than P-values, for
a selected Bayesian threshold rule, the tables or regression
models may serve as a reference to the coinciding P-value
threshold. Therefore, in applying a single Bayesian threshold
for each sample set of an overlap analysis the tables may be
used to determine the approximate false-positive rate within
each sample set, and thus removing some of the opaqueness of
Bayesian approaches. Alternatively, if a certain PFP is desired,
the table and models may aid in selection of the Bayesian
threshold parameters.

In our overlap analysis of obesity and osteoarthritis, a vari-
ant in FTO, which is established as associated with both traits,
was the top signal based on both ABFs and on P-values, which

demonstrates the validity of our approach. There were several
additional signals within the top 20 for either approach that
are within established obesity loci, though not for OA. How-
ever, rs6788477, which was rank 19 for ABFs and rank 31 for
P-values, is 6.79 MB from GNL3, an established OA locus. In
addition, we detected an obesity-associated SNP, rs13107325
(ABF rank 11, P-value rank 29) in the gene SLC39A8/ZIP8,
which has been strongly implicated in OA pathogenesis [Kim
et al., 2014]. As it is unknown for all identified SNPs outside
of FTO whether or not there is a true association with both
obesity and OA, there was difficulty in comparing the ABF
and P-value approaches. This was overcome by considering
conditional probabilities in our simulation studies.

In simulation studies under the alternative hypothesis, we
considered the probability that the ABF approach identified a
signal, given that this signal was identified by at least one of the
methods. Likewise, the analogous probability was examined
for P-values. We found that in scenarios of similar power
differences between the approaches, the ABF approach was
able to capture a higher proportion of overlapping associated
variants than P-values.

Although Bayesian approaches are sometimes considered
less appealing than frequentist, there is a clear advantage
when a single threshold is to be used for multiple studies.
In particular, the type I error rate is appropriately adjusted
for a given Bayesian threshold, such that the type I error is
smaller for the larger, more powerful study. The ABF route
lends simplicity in threshold selection for studies of different
sizes, as the ABF is directly comparable between two studies
irrespective of the study size. In contrast, a relatively small
P-value does not have the same meaning in studies of very
different sizes.
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