913 research outputs found

    The Thermal Stability of Mass-Loaded Flows

    Full text link
    We present a linear stability analysis of a flow undergoing conductively-driven mass-loading from embedded clouds. We find that mass-loading damps isobaric and isentropic perturbations, and in this regard is similar to the effect of thermal conduction, but is much more pronounced where many embedded clumps exist. The stabilizing influence of mass-loading is wavelength independent against isobaric (condensing) perturbations, but wavelength dependent against isentropic (wave-like) perturbations. We derive equations for the degree of mass-loading needed to stabilize such perturbations. We have also made 1D numerical simulations of a mass-loaded radiative shock and demonstrated the damping of the overstability when mass-loading is rapid enough.Comment: 4 pages, 1 figure, to be published in A&

    Mass-loaded spherical accretion flows

    Get PDF
    We have calculated the evolution of spherical accretion flows undergoing mass-loading from embedded clouds through either conduction or hydrodynamical ablation. We have observed the effect of varying the ratios of the mass-loading timescale and the cooling timescale to the ballistic crossing timescale through the mass-loading region. We have also varied the ratio of the potential energy of a particle injected into the flow near the outer region of mass-loading to the temperature at which a minimum occurs in the cooling curve. The two types of mass-loading produce qualitatively different types of behaviour in the accretion flow, since mass-loading through conduction requires the ambient gas to be hot, whereas mass ablation from clumps occurs throughout the flow. Higher ratios of injected to accreted mass typically occur with hydrodynamical ablation, in agreement with previous work on wind-blown bubbles and supernova remnants. We find that mass-loading damps the radiative overstability of such flows, in agreement with our earlier work. If the mass-loading is high enough it can stabilize the accretion shock at a constant radius, yielding an almost isothermal subsonic post-shock flow. Such solutions may be relevant to cooling flows onto massive galaxies. Mass-loading can also lead to the formation of isolated shells of high temperature material, separated by gas at cooler temperatures

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    Patients' internet use in New Zealand for information about medicines: Implications for policy and practice

    Get PDF
    BACKGROUND: The ubiquitous use of the internet sees patients increasingly look online for information about their medicines. OBJECTIVE: This study aimed to understand the use of internet to meet medicine information needs of a sample of New Zealand patients. METHOD: Using a descriptive exploratory approach 60 mental health and general medical adult patients at one large urban were interviewed. These semi-structured interviews were audio recorded, transcribed and coded for inductive thematic analysis. FINDINGS: This study found that the internet is frequently used to meet the medicines information needs of patients. Despite the ease of access to information on the internet patients need guidance to locate credible and trustworthy online resources. CONCLUSIONS: Implications from this study relate to both practice and policy, and include the need for health professionals to have enhanced communication skills as they become information brokers who provide supplementary, reliable sources of patient-centric medicines information. Having a New Zealand specific website that includes an extensive section on medicines is a policy recommendation of this study, as is identifying tools to readily identify patients’ needs and preferences for medicines information

    Strong-Coupling Constant at Three Loops in Momentum Subtraction Scheme

    Full text link
    In this paper we compute the three-loop corrections to the β\beta function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS‾\overline{\rm{MS}} schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS‾\overline{\rm{MS}} scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β\beta function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region.Comment: 17 pages, 5 figure

    Semi-naive dimensional renormalization

    Get PDF
    We propose a treatment of γ5\gamma^5 in dimensional regularization which is based on an algebraically consistent extension of the Breitenlohner-Maison-'t Hooft-Veltman (BMHV) scheme; we define the corresponding minimal renormalization scheme and show its equivalence with a non-minimal BMHV scheme. The restoration of the chiral Ward identities requires the introduction of considerably fewer finite counterterms than in the BMHV scheme. This scheme is the same as the minimal naive dimensional renormalization in the case of diagrams not involving fermionic traces with an odd number of γ5\gamma^5, but unlike the latter it is a consistent scheme. As a simple example we apply our minimal subtraction scheme to the Yukawa model at two loops in presence of external gauge fields.Comment: 28 pages, 3 figure

    Decays of Scalar and Pseudoscalar Higgs Bosons into Fermions: Two-loop QCD Corrections to the Higgs-Quark-Antiquark Amplitude

    Full text link
    As a first step in the aim of arriving at a differential description of neutral Higgs boson decays into heavy quarks, h→QQˉXh \to Q {\bar Q}X, to second order in the QCD coupling αS\alpha_S, we have computed the hQQˉhQ{\bar Q} amplitude at the two-loop level in QCD for a general neutral Higgs boson which has both scalar and pseudoscalar couplings to quarks. This amplitude is given in terms of a scalar and a pseudoscalar vertex form factor, for which we present closed analytic expressions in terms of one-dimensional harmonic polylogarithms of maximum weight 4. The results hold for arbitrary four-momentum squared, q2q^2, of the Higgs boson and of the heavy quark mass, mm. Moreover we derive the approximate expressions of these form factors near threshold and in the asymptotic regime m2/q2≪1m^2/q^2 \ll 1.Comment: 56 pages, 2 figure

    Automatized One-Loop Calculations in 4 and D dimensions

    Full text link
    Two program packages are presented for evaluating one-loop amplitudes. They can work either in dimensional regularization or in constrained differential renormalization. The latter method is found at the one-loop level to be equivalent to regularization by dimensional reduction.Comment: 16 pages, uses amstex and axodraw, 1 eps figur

    From arbitrariness to ambiguities in the evaluation of perturbative physical amplitudes and their symmetry relations

    Full text link
    A very general calculational strategy is applied to the evaluation of the divergent physical amplitudes which are typical of perturbative calculations. With this approach in the final results all the intrinsic arbitrariness of the calculations due to the divergent character is still present. We show that by using the symmetry properties as a guide to search for the (compulsory) choices in such a way as to avoid ambiguities, a deep and clear understanding of the role of regularization methods emerges. Requiring then an universal point of view for the problem, as allowed by our approach, very interesting conclusions can be stated about the possible justifications of most intriguing aspect of the perturbative calculations in quantum field theory: the triangle anomalies.Comment: 16 pages, no figure
    • …
    corecore