110 research outputs found

    Inelastic scattering calculations with projected Hartree-Fock wave functions: Coupled channel treatment

    Get PDF
    Microscopic coupled-channel analysis of proton inelastic scattering from neon and magnesium ion

    Quasideuteron states with deformed core

    Get PDF
    The M1 transitions between low-lying T=1 and T=0 states in deformed odd-odd N=Z nuclei are analyzed in the frames of the rotor-plus-particle model. Using the representation of an explicit coupling of angular momenta we show that strong coupling of the quasideuteron configurations to the axially deformed core results in a distribution of the total 0+ --> 1+ strength among a few low-lying 1+ states. Simple analytical formulae for B(M1) values are derived. The realization of the M1 sum rule for the low-lying 1+,T=0 states is indicated. The calculated B(M1) values are found to be in good agreement with experimental data and reveal specific features of collectivity in odd-odd N=Z nuclei.Comment: 11 pages, 1 figure, LaTe

    Di-neutron elastic transfer in the 4He(6He,6He)4He reaction

    Get PDF
    Elastic 6^{6}He+4^4He data measured at Ec.m.=11.6,E_{\rm c.m.}=11.6, 15.9, and 60.3 MeV have been analyzed within the coupled reaction channels (CRC) formalism, with the elastic-scattering and two-neutron (2n2n) transfer amplitudes coherently included. Contributions from the direct (one-step) and sequential (two-step) 2n2n-transfers were treated explicitly based on a realistic assumption for the 2n2n-transfer form factor. The oscillatory pattern observed in 4^4He(6^6He,6^6He)4^4He angular distribution at low energies was found to be due to an interference between the elastic scattering and 2n2n-transfer amplitudes. Our CRC analysis shows consistently that the direct 2n2n-transfer strongly dominates over the sequential transfer and thus confirms the dominance of 2n4n-^4He configuration over the n5n-^5He one in the 6^6He wave function. This result suggests a strong clusterization of the two valence neutrons and allows, therefore, a reliable estimate for the \emph{di-neutron} spectroscopic amplitude.Comment: Accepted for publication in Phys. Lett.

    Molecular-Orbital Interpretation of the Δl=1 ℏ Transfer Anomaly in Heavy-Ion Reactions

    No full text
    corecore