9 research outputs found

    Immobilization of Aspergillus oryzae DSM 1863 for l-Malic Acid Production

    Get PDF
    Whole-cell immobilization by entrapment in natural polymers can be a tool for morphological control and facilitate biomass retention. In this study, the possibility of immobilizing the filamentous fungus Aspergillus oryzae for l-malic acid production was evaluated with the two carbon sources acetate and glucose. A. oryzae conidia were entrapped in alginate, agar, and κ-carrageenan and production was monitored in batch processes in shake flasks and 2.5-L bioreactors. With glucose, the malic acid concentration after 144 h of cultivation using immobilized particles was mostly similar to the control with free biomass. In acetate medium, production with immobilized conidia of A. oryzae in shake flasks was delayed and titers were generally lower compared to cultures with free mycelium. While all immobilization matrices were stable in glucose medium, disintegration of bead material and biomass detachment in acetate medium was observed in later stages of the fermentation. Still, immobilization proved advantageous in bioreactor cultivations with acetate and resulted in increased malic acid titers. This study is the first to evaluate immobilization of A. oryzae for malic acid production and describes the potential but also challenges regarding the application of different matrices in glucose and acetate media

    Optimization of l-malic acid production from acetate with Aspergillus oryzae DSM 1863 using a pH-coupled feeding strategy

    Get PDF
    Background Malic acid, a dicarboxylic acid mainly used in the food industry, is currently produced from fossil resources. The utilization of low-cost substrates derived from biomass could render microbial processes economic. Such feedstocks, like lignocellulosic hydrolysates or condensates of fast pyrolysis, can contain high concentrations of acetic acid. Acetate is a suitable substrate for L-malic acid production with the filamentous fungus Aspergillus oryzae DSM 1863, but concentrations obtained so far are low. An advantage of this carbon source is that it can be used for pH control and simultaneous substrate supply in the form of acetic acid. In this study, we therefore aimed to enhance L-malate production from acetate with A. oryzae by applying a pH-coupled feeding strategy. Results In 2.5-L bioreactor fermentations, several feeding strategies were evaluated. Using a pH-coupled feed consisting of 10 M acetic acid, the malic acid concentration was increased about 5.3-fold compared to the batch process without pH control, resulting in a maximum titer of 29.53 ± 1.82 g/L after 264 h. However, it was not possible to keep both the pH and the substrate concentration constant during this fermentation. By using 10 M acetic acid set to a pH of 4.5, or with the repeated addition of NaOH, the substrate concentration could be maintained within a constant range, but these strategies did not prove beneficial as lower maximum titers and yields were obtained. Since cessation of malic acid production was observed in later fermentation stages despite carbon availability, a possible product inhibition was evaluated in shake flask cultivations. In these experiments, malate and succinate, which is a major by-product during malic acid production, were added at concentrations of up to 50 g/L, and it was found that A. oryzae is capable of organic acid production even at high product concentrations. Conclusions This study demonstrates that a suitable feeding strategy is necessary for efficient malic acid production from acetate. It illustrates the potential of acetate as carbon source for microbial production of the organic acid and provides useful insights which can serve as basis for further optimization

    Implementation of the UN Convention on the Rights of Persons with Disabilities: A Comparison of Four European Countries with Regards to Assistive Technologies

    Get PDF
    The United Nations Convention on the Rights of Persons with Disabilities (CRPD) is an international treaty that aims to promote, protect and ensure the rights of persons with disabilities so that they can fully participate in society and enjoy the same freedoms and opportunities as others. It provides an important framework for the inclusion of persons with disabilities with the help of Assistive Technologies (AT). This paper assesses and compares the implementation of the CRPD with regards to the availability of AT in four countries (Germany, Hungary, Portugal and Sweden), which to some extent represent different European regions. The paper is based on a review of relevant academic literature, the DOTCOM database and regulatory documents as well as on five validation interviews with national experts. In the countries studied, anti-discriminatory and other legislation is included at the highest level of the legal framework and contains detailed rules on definitions, remedies and legal procedures. There are specific prohibitions in several fields, such as employment, housing, and healthcare. Nonetheless, there are still cases of non-compliance with the CRPD and of laws and regulations which discriminate against persons with a disability. Additionally, there are great variations between countries. As very positive examples of favourable regulatory frameworks for furthering inclusion with the help of ATs do exist, there may be benefit in raising awareness of such examples to support other countries in developing their own measures

    The hierarchical packing of euchromatin domains can be described as multiplicative cascades

    Get PDF
    The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin

    The hierarchical packing of euchromatin domains can be described as multiplicative cascades

    Get PDF
    The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin

    Immobilization of <i>Aspergillus oryzae</i> DSM 1863 for <span style="font-variant: small-caps">l</span>-Malic Acid Production

    No full text
    Whole-cell immobilization by entrapment in natural polymers can be a tool for morphological control and facilitate biomass retention. In this study, the possibility of immobilizing the filamentous fungus Aspergillus oryzae for l-malic acid production was evaluated with the two carbon sources acetate and glucose. A. oryzae conidia were entrapped in alginate, agar, and κ-carrageenan and production was monitored in batch processes in shake flasks and 2.5-L bioreactors. With glucose, the malic acid concentration after 144 h of cultivation using immobilized particles was mostly similar to the control with free biomass. In acetate medium, production with immobilized conidia of A. oryzae in shake flasks was delayed and titers were generally lower compared to cultures with free mycelium. While all immobilization matrices were stable in glucose medium, disintegration of bead material and biomass detachment in acetate medium was observed in later stages of the fermentation. Still, immobilization proved advantageous in bioreactor cultivations with acetate and resulted in increased malic acid titers. This study is the first to evaluate immobilization of A. oryzae for malic acid production and describes the potential but also challenges regarding the application of different matrices in glucose and acetate media

    The hierarchical packing of euchromatin domains can be described as multiplicative cascades.

    Get PDF
    The genome is packed into the cell nucleus in the form of chromatin. Biochemical approaches have revealed that chromatin is packed within domains, which group into larger domains, and so forth. Such hierarchical packing is equally visible in super-resolution microscopy images of large-scale chromatin organization. While previous work has suggested that chromatin is partitioned into distinct domains via microphase separation, it is unclear how these domains organize into this hierarchical packing. A particular challenge is to find an image analysis approach that fully incorporates such hierarchical packing, so that hypothetical governing mechanisms of euchromatin packing can be compared against the results of such an analysis. Here, we obtain 3D STED super-resolution images from pluripotent zebrafish embryos labeled with improved DNA fluorescence stains, and demonstrate how the hierarchical packing of euchromatin in these images can be described as multiplicative cascades. Multiplicative cascades are an established theoretical concept to describe the placement of ever-smaller structures within bigger structures. Importantly, these cascades can generate artificial image data by applying a single rule again and again, and can be fully specified using only four parameters. Here, we show how the typical patterns of euchromatin organization are reflected in the values of these four parameters. Specifically, we can pinpoint the values required to mimic a microphase-separated state of euchromatin. We suggest that the concept of multiplicative cascades can also be applied to images of other types of chromatin. Here, cascade parameters could serve as test quantities to assess whether microphase separation or other theoretical models accurately reproduce the hierarchical packing of chromatin
    corecore