17 research outputs found

    Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5'-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists.

    Get PDF
    Novel analogs of the P2 receptor antagonist pyridoxal-5'-phosphate-6-phenylazo-2',4'-disulfonate (PPADS) were synthesized. Modifications were made through functional group substitution on the sulfophenyl ring and at the phosphate moiety through the inclusion of phosphonates, demonstrating that a phosphate linkage is not required for P2 receptor antagonism. Substituted 6-phenylazo and 6-naphthylazo derivatives were also evaluated. Among the 6-phenylazo derivatives, 5'-methyl, ethyl, propyl, vinyl, and allyl phosphonates were included. The compounds were tested as antagonists at turkey erythrocyte and guinea-pig taenia coli P2Y(1) receptors, in guinea-pig vas deferens and bladder P2X(1) receptors, and in ion flux experiments by using recombinant rat P2X(2) receptors expressed in Xenopus oocytes. Competitive binding assay at human P2X(1) receptors in differentiated HL-60 cell membranes was carried out by using [(35)S]ATP-?-S. A 2'-chloro-5'-sulfo analog of PPADS (C(14)H(12)O(9)N(3)ClPSNa), a vinyl phosphonate derivative (C(15)H(12)O(11)N(3)PS(2)Na(3)), and a naphthylazo derivative (C(18)H(14)O(12)N(3)PS(2)Na(2)), were particularly potent in binding to human P2X(1) receptors. The potencies of phosphate derivatives at P2Y(1) receptors were generally similar to PPADS itself, except for the p-carboxyphenylazo phosphate derivative C(15)H(13)O(8)N(3)PNa and its m-chloro analog C(15)H(12)O(8)N(3)ClPNa, which were selective for P2X vs. P2Y(1) receptors. C(15)H(12)O(8)N(3)ClPNa was very potent at rat P2X(2) receptors with an IC(50) value of 0.82 ?M. Among the phosphonate derivatives, [4-formyl-3-hydroxy-2-methyl-6-(2-chloro-5-sulfonylphenylazo)-pyrid-5-yl]methylphosphonic acid (C(14)H(12)-O(8)N(3)ClPSNa) showed high potency at P2Y(1) receptors with an IC(50) of 7.23 ?M. The corresponding 2,5-disulfonylphenyl derivative was nearly inactive at turkey erythrocyte P2Y(1) receptors, whereas at recombinant P2X(2) receptors had an IC(50) value of 1.1 ?M. An ethyl phosphonate derivative (C(15)H(15)O(11)N(3)PS(2)Na(3)), whereas inactive at turkey erythrocyte P2Y(1) receptors, was particularly potent at recombinant P2X(2) receptors

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Transport of cryptosporidium parvum oocysts through disparate agricultural soils

    Get PDF
    Ph.D. University of Hawaii at Manoa 2011.Includes bibliographical references.The presence of Cryptosporidium parvum oocysts in source waters is a cause of major public health concern for drinking-water treatment plants. The oocysts occurring in the feces of livestock can be disseminated horizontally via runoff during storm events and contaminate surface waters. Soils are often the initial barrier to subsurface transport of Cryptosporidium parvum oocysts which receive oocyst-laden manure from grazing livestock. However, rainfall events can cause rapid vertical movement of oocysts through preferential flow paths in the soils leading to ground water contamination. A systematic study was undertaken to assess the efficacy of three disparate agricultural soils (two tropical, variable-charge soils of volcanic origin from Hawaii and a humic, quartz-rich temperate soil from Illinois) to remove Cryptosporidium parvum oocysts and oocystsized microspheres in batch and flow-through columns. To test the effect of soil mineralogy on oocysts transport, saturated flow-through column experiments were conducted by packing the three agricultural soils and injecting oocysts and microspheres. The results showed that oocysts were transported through preferential flow paths in high-clay, high-iron tropical soil from Hawaii and humic-rich quartz dominated temperate soil from Illinois. Transport through volcanic-ash soil collected from the island of Hawaii was highly reversible because of high soil organic matter content. The effects of dissolved organic carbon (DOC) on oocysts and microspheres transport through these soils were assessed in a subsequent phase of this study. DOC in form of natural organic matter enhanced the removal of oocyst-sized colloids (microspheres and oocysts), whereas surfactants lowered the removal efficiency of oocysts and microspheres. The transport potentials of oocysts and microspheres were affected differentially by the physicochemical properties of the soils. Whereas oocysts transport was more strongly affected by soil mineralogy, microspheres transport was much more sensitive to the nature of DOC

    A Pyridoxine Cyclic Phosphate and Its 6-Azoaryl Derivative Selectively Potentiate and Antagonize Activation of P2X1 Receptors

    No full text
    Analogues of the P2 receptor antagonists pyridoxal-5'-phosphate and the 6-azophenyl-2',4'-disulfonate derivative (PPADS), in which the phosphate group was cyclized by esterification to a CH2OH group at the 4-position, were synthesized. The cyclic pyridoxine-alpha4, 5-monophosphate, compound 2 (MRS 2219), was found to be a selective potentiator of ATP-evoked responses at rat P2X1 receptors with an EC50 value of 5.9 +/- 1.8 microM, while the corresponding 6-azophenyl-2',5'-disulfonate derivative, compound 3 (MRS 2220), was a selective antagonist. The potency of compound 3 at the recombinant P2X1 receptor (IC50 10.2 +/- 2.6 microM) was lower than PPADS (IC50 98.5 +/- 5.5 nM) or iso-PPADS (IC50 42.5 +/- 17.5 nM), although unlike PPADS its effect was reversible with washout and surmountable. Compound 3 showed weak antagonistic activity at the rat P2X3 receptor (IC50 58.3 +/- 0.1 microM), while at recombinant rat P2X2 and P2X4 receptors no enhancing or antagonistic properties were evident. Compounds 2 and 3 were found to be inactive as either agonists or antagonists at the phospholipase C-coupled P2Y1 receptor of turkey erythrocytes, at recombinant human P2Y2 and P2Y4 receptors, and at recombinant rat P2Y6 receptors. Similarly, compounds 2 and 3 did not have measurable affinity at adenosine A1, A2A, or A3 receptors. The lack of an aldehyde group in these derivatives indicates that Schiff's base formation with the P2X1 receptor is not necessarily required for recognition of pyridoxal phosphate derivatives. Thus, compounds 2 and 3 are relatively selective pharmacological probes of P2X1 receptors, filling a long-standing need in the P2 receptor field, and are also important lead compounds for future studies

    Competitive and selective antagonism of P2Y(1) receptors by N(6)-methyl 2′-deoxyadenosine 3′,5′-bisphosphate

    Get PDF
    The antagonist activity of N(6)-methyl 2′-deoxyadenosine 3′,5′-bisphosphate (N6MABP) has been examined at the phospholipase C-coupled P2Y(1) receptor of turkey erythrocyte membranes. N6MABP antagonized 2MeSATP-stimulated inositol phosphate hydrolysis with a potency approximately 20 fold greater than the previously studied parent molecule, adenosine 3′,5′-bisphosphate. The P2Y(1) receptor antagonism observed with N6MABP was competitive as revealed by Schild analysis (pK(B)=6.99±0.13). Whereas N6MABP was an antagonist at the human P2Y(1) receptor, no antagonist effect of N6MABP was observed at the human P2Y(2), human P2Y(4) or rat P2Y(6) receptors

    Effect of Dissolved Organic Carbon on the Transport and Attachment Behaviors of <i>Cryptosporidium parvum</i> oocysts and Carboxylate-Modified Microspheres Advected through Temperate Humic and Tropical Volcanic Agricultural soil

    No full text
    Transport of <i>Cryptosporidium parvum</i> oocysts and microspheres in two disparate (a clay- and Fe-rich, volcanic and a temperate, humic) agricultural soils were studied in the presence and absence of 100 mg L<sup>–1</sup> of sodium dodecyl benzene sulfonate (SDBS), and Suwannee River Humic Acid (SRHA) at pH 5.0–6.0. Transport of carboxylate-modified, 1.8 μm microspheres in soil columns was highly sensitive to the nature of the dissolved organic carbon (DOC), whereas oocysts transport was more affected by soil mineralogy. SDBS increased transport of microspheres from 48% to 87% through the tropical soil and from 43% to 93% in temperate soil. In contrast, SRHA reduced transport of microspheres from 48% to 28% in tropical soil and from 43% to 16% in temperate soil. SDBS also increased oocysts transport through the temperate soil 5-fold, whereas no oocyst transport was detected in tropical soil. SRHA had only a nominal effect in increasing oocysts transport in tropical soil, but caused a 6-fold increase in transport through the temperate soil. Amendments of only 4 mg L<sup>–1</sup> SRHA and SDBS decreased oocyst hydrophobicity from 66% to 20% and from 66% to 5%, respectively. However, SDBS increased microsphere hydrophobicity from 16% to 33%. Soil fines, which includes clays, and SRHA, both caused the oocysts zeta potential (ζ) to become more negative, but caused the highly hydrophilic microspheres to become less negatively charged. The disparate behaviors of the two colloids in the presence of an ionic surfactant and natural organic matter suggest that microspheres may not be suitable surrogates for oocysts in certain types of soils. These results indicate that whether or not DOC inhibits or promotes transport of oocysts and microspheres in agricultural soils and by how much, depends not only on the surface characteristics of the colloid, but the nature of the DOC and the soil mineralogy

    Structure-activity relationships of bisphosphate nucleotide derivatives as P2Y(1) receptor antagonists and partial agonists

    No full text
    The P2Y1 receptor is present in the heart, in skeletal and various smooth muscles, and in platelets, where its activation is linked to aggregation. Adenosine 3',5'- and 2',5'-bisphosphates have been identified as selective antagonists at the P2Y1 receptor (Boyer et al. Mol. Pharmacol. 1996, 50, 1323-1329) and have been modified structurally to increase receptor affinity (Camaioni et al. J. Med. Chem. 1998, 41, 183-190). We have extended the structure-activity relationships to a new series of deoxyadenosine bisphosphates with substitutions in the adenine base, ribose moiety, and phosphate groups. The activity of each analogue at P2Y1 receptors was determined by measuring its capacity to stimulate phospholipase C in turkey erythrocyte membranes (agonist effect) and to inhibit phospholipase C stimulation elicited by 10 nM 2-(methylthio)adenosine 5'-diphosphate (antagonist effect). 2'-Deoxyadenosine bisphosphate analogues containing halo, amino, and thioether groups at the 2-position of the adenine ring were more potent P2Y1 receptor antagonists than analogues containing various heteroatom substitutions at the 8-position. An N6-methyl-2-chloro analogue, 6, was a full antagonist and displayed an IC50 of 206 nM. Similarly, N6-methyl-2-alkylthio derivatives 10, 14, and 15 were nearly full antagonists of IC50 < 0.5 microM. On the ribose moiety, 2'-hydroxy, 4'-thio, carbocyclic, and six-membered anhydrohexitol ring modifications have been prepared and resulted in enhanced agonist properties. The 1,5-anhydrohexitol analogue 36 was a pure agonist with an EC50 of 3 microM, i.e., similar in potency to ATP. 5'-Phosphate groups have been modified in the form of triphosphate, methyl phosphate, and cyclic 3',5'-diphosphate derivatives. The carbocyclic analogue had enhanced agonist efficacy, and the 5'-O-phosphonylmethyl modification was tolerated, suggesting that deviations from the nucleotide structure may result in improved utility as pharmacological probes. The N6-methoxy modification eliminated receptor affinity. Pyrimidine nucleoside 3', 5'-bisphosphate derivatives were inactive as agonists or antagonists at P2Y receptor subtypes
    corecore