70 research outputs found

    A Framework of Building and Locational Characteristics Ranking for Purpose-built Offices in Malaysia

    Get PDF
    The development of purpose-built office market in Malaysia is primarily resolved by a supplydemand market. Since the office market in Malaysia has displayed significance improvement due to increasing level of competitiveness, many characteristics of purpose-built office have appeared and become prominent during the process of assessment. These characteristics were generally used as indicators in property valuation, building performance as well as office market appraisal. Based on these characteristics, property market participants can evaluate their property proficiently based on their requirements, especially in decision making during business planning, investment or property management. Technology growth and national policy also gave contribution factors on revealing newly characteristics of purpose-built office such as green building, intelligent building and sustainable development model. The purpose of this article is to identify suitable characteristics of purpose-built office that can be used in Malaysia. Integral to achieving this objective, exploration on purpose built office characteristics in a global and local context will be reconsidered. As a result, a building and locational framework of purpose-built office’s characteristics in Malaysia will be diagnosed and verified appropriately

    BioTIME 2.0 : expanding and improving a database of biodiversity time series

    Get PDF
    Funding: H2020 European Research Council (Grant Number(s): GA 101044975, GA 101098020).Motivation: Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables: Included The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain: Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain: The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement: The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format: csv and. SQL.Peer reviewe

    Population differentiation of Southern Indian male lineages correlates with agricultural expansions predating the caste system

    Get PDF
    Christina J. Adler, Alan Cooper, Clio S.I. Der Sarkissian and Wolfgang Haak are contributors to the Genographic ConsortiumPrevious studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed, <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna(caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.GaneshPrasad ArunKumar, David F. Soria-Hernanz, Valampuri John Kavitha, Varatharajan Santhakumari Arun, Adhikarla Syama, Kumaran Samy Ashokan, Kavandanpatti Thangaraj Gandhirajan, Koothapuli Vijayakumar, Muthuswamy Narayanan, Mariakuttikan Jayalakshmi, Janet S. Ziegle, Ajay K. Royyuru, Laxmi Parida, R. Spencer Wells, Colin Renfrew, Theodore G. Schurr, Chris Tyler Smith, Daniel E. Platt, Ramasamy Pitchappan, The Genographic Consortiu

    BioTIME 2.0 : expanding and improving a database of biodiversity time series

    Get PDF
    Motivation. Here, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables Included. The database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and Grain. Sampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and Grain. The earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample-level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of Measurement. The database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Format. csv and. SQL

    On Modeling the Affective Effect on Learning

    Full text link

    Learning Student Models through an Ontology of Learning Strategies

    No full text

    An Approach for Generating Minimal Test Cases for Regression Testing

    Get PDF
    AbstractOne of the main objectives of regression testing is to test that the changed system works according to specification, at the same time optimizing the number of test cases by making it efficient and effective. This paper presents a black-box approach that uses Steiner Tree algorithm to generate a minimal test set to check functionality. Test cases are generated from specification represented using the Unified Modeling Language (UML). A set of terminals are given as input to the Steiner Tree algorithm with the graph G. The changed nodes are defined as terminal nodes to ensure inclusion in the test set. A minimal set of test cases is generated as an indicator to the effectiveness of the change. Initial results show that the method is applicable for quick testing to ensure that basic functionality works correctly
    corecore