29 research outputs found

    Why is it some households fall into poverty at the same time others are escaping poverty? Evidence from Kenya

    Get PDF
    Presents study carried out to evaluate how different households have fared over time in the communities. The aim of the study was to determine the proportions of households that Why is it some households fall into poverty at the same time others are escaping poverty? The study presents results from a study of poverty dynamics across Kenya using a participatory poverty assessment methodology known as the ‘Stages of Progress Methodology.’ This method is a relatively rapid, effective and participatory way to learn about poverty processes at both community and household levels. The approach generates very useful information for identifying the poor, and for understanding the factors that push people into and pull them out of poverty. Using this methodology, the typical stages through which people progress out of poverty were elicited for 71 Kenyan communities and 4773 households. The discussion of the different stages, and the order in which they occur, provoked lively debate among assembled villagers. The findings show that in virtually all 71 communities, house-holds progress out of poverty first by acquiring food, followed by obtaining adequate clothing, making improvements in their shelter, securing primary education for their children, starting small businesses. The paper presents the results of recent investigations, carried out specifically to gain knowledge about the reasons underlying poverty. Reasons for escape and reasons for descent operating in each livelihood region of Kenya were identified through a careful examination of poverty dynamics

    Risk Factors of Microbial Keratitis in Uganda: A Case Control Study.

    Get PDF
    Purpose: Microbial keratitis (MK), is a frequent cause of sight loss worldwide, particularly in low and middle-income countries. This study aimed to investigate the risk factors of MK in Uganda.Methods: Using a nested case control, we recruited healthy community controls for patients presenting with MK at the two main eye units in Southern Uganda between December 2016 and March 2018. Controls were individually matched for age, gender and village of the cases on a 1:1 ratio. We collected information on demographics, occupation, HIV and Diabetes Mellitus status. In STATA version 14.1, multivariable conditional logistic regression was used to generate odds ratios for risk factors of MK and a likelihood ratio test used to assess statistical significance of associations.Results: Two hundred and fifteen case-control pairs were enrolled. The HIV positive patients among the cases was 9% versus 1% among the controls, p = .0003. Diabetes 7% among the cases versus 1.4% among the controls, p = .012. Eye trauma was 29% versus 0% among the cases and controls. In the multivariable model adjusted for age, sex and village, HIV (OR 83.5, 95%CI 2.01-3456, p = .020), Diabetes (OR 9.38, 95% CI 1.48-59.3, p = .017) and a farming occupation (OR 2.60, 95%CI 1.21-5.57, p = .014) were associated with MK. Compared to a low socio-economic status, a middle status was less likely to be associated with MK (OR 0.29, 95%CI 0.09-0.89, p < .0001).Conclusion: MK was associated with HIV, Diabetes, being poor and farming as the main occupation. More studies are needed to explore how these factors predispose to MK

    Epidemiology of Microbial Keratitis in Uganda: A Cohort Study.

    Get PDF
    Purpose: To describe the epidemiology of Microbial Keratitis (MK) in Uganda.Methods: We prospectively recruited patients presenting with MK at two main eye units in Southern Uganda between December 2016 and March 2018. We collected information on clinical history and presentation, microbiology and 3-month outcomes. Poor vision was defined as vision < 6/60).Results: 313 individuals were enrolled. Median age was 47 years (range 18-96) and 174 (56%) were male. Median presentation time was 17 days from onset (IQR 8-32). Trauma was reported by 29% and use of Traditional Eye Medicine by 60%. Majority presented with severe infections (median infiltrate size 5.2 mm); 47% were blind in the affected eye (vision < 3/60). Microbiology was available from 270 cases: 62% were fungal, 7% mixed (bacterial and fungal), 7% bacterial and 24% no organism detected. At 3 months, 30% of the participants were blind in the affected eye, while 9% had lost their eye from the infection. Delayed presentation (overall p = .007) and prior use of Traditional Eye Medicine (aOR 1.58 [95% CI 1.04-2.42], p = .033) were responsible for poor presentation. Predictors of poor vision at 3 months were: baseline vision (aOR 2.98 [95%CI 2.12-4.19], p < .0001), infiltrate size (aOR 1.19 [95%CI 1.03-1.36], p < .020) and perforation at presentation (aOR 9.93 [95% CI 3.70-26.6], p < .0001).Conclusion: The most important outcome predictor was the state of the eye at presentation, facilitated by prior use of Traditional Eye Medicine and delayed presentation. In order to improve outcomes, we need effective early interventions

    Traditional eye medicine use in microbial keratitis in Uganda : a mixed methods study [version 2; peer review: 2 approved]

    Get PDF
    Background: Traditional eye medicine (TEM) is frequently used to treat microbial keratitis (MK) in many parts of Africa. Few reports have suggested that this is associated with a worse outcome. We undertook this large prospective study to determine how TEM use impacts presentation and outcome of MK and to explore reasons why people use TEM for treatment in Uganda. Methods: In a mixed method prospective cohort study, we enrolled patients presenting with MK at the two main eye units in Southern Uganda between December 2016 and March 2018 and collected information on history, TEM use, microbiology and 3-month outcomes. We conducted qualitative interviews with patients, carers traditional healers on reasons why people use TEM. Outcome measures included presenting vision and at 3-months, comparing TEM Users versus Non-Users. A thematic coding framework was deployed to explore reasons for use of TEM. Results: Out of 313 participants enrolled, 188 reported TEM use. TEM Users had a delayed presentation; median presenting time 18 days versus 14 days, p= 0.005; had larger ulcers 5.6 mm versus 4.3 mm p=0.0005; a worse presenting visual acuity median logarithm of the minimum angle of resolution (Log MAR) 1.5 versus 0.6, p=0.005; and, a worse visual acuity at 3 months median Log MAR 0.6 versus 0.2, p=0.010. In a multivariable logistic regression model, distance from the eye hospital and delayed presentation were associated with TEM use. Reasons for TEM use included lack of confidence in conventional medicine, health system breakdown, poverty, fear of the eye hospital, cultural belief in TEM, influence from traditional healers, personal circumstances and ignorance. Conclusion: TEM users had poorer clinical presentation and outcomes. Capacity building of the primary health centres to improve access to eye care and community behavioural change initiatives against TEM use should be encouraged

    Delay Along the Care Seeking Journey of Patients with Microbial Keratitis in Uganda

    Get PDF
    Purpose: To describe the care seeking journey and causes of delay among patients with Microbial Keratitis in Uganda. Methods: A prospective cohort of patients presenting with microbial keratitis at the two main eye units in Southern Uganda (2016-2018). We collected information on demographics, home address, clinical history, and presentation pathway including, order of facilities where patients went to seek care, treatment advice, cost of care, and use of Traditional Eye Medicine. Presentation time was noted. We compared "direct" presenters versus "indirect" presenters and analysed predictors of delay. Results: About 313 patients were enrolled. All were self-referred. Only 19% of the patients presented directly to the eye hospital. Majority (52%) visited one facility before presenting, 19% visited two facilities, 9% visited three facilities, and 2% visited four facilities. The cost of care increased with increase in the number of facilities visited. People in a large household, further distance from the eye hospital and those who used Traditional Eye Medicine were less likely to come directly to the eye hospital. Visiting another facility prior to the eye hospital and use of Traditional Eye Medicine aOR 1.58 (95%CI 1.03-2.43), p = .038 were associated with delayed presentation to the eye hospital. Conclusion: This study provided information on patient journeys to seek care. Delay was largely attributable to having visited another health facility: a referral mechanism for microbial keratitis was non-existent. There is need to explore how these health system gaps can be strengthened

    The Lancet Global Health Commission on Global Eye Health: vision beyond 2020

    Get PDF
    Eye health and vision have widespread and profound implications for many aspects of life, health, sustainable development, and the economy. Yet nowadays, many people, families, and populations continue to suffer the consequences of poor access to high-quality, affordable eye care, leading to vision impairment and blindness. In 2020, an estimated 596 million people had distance vision impairment worldwide, of whom 43 million were blind. Another 510 million people had uncorrected near vision impairment, simply because of not having reading spectacles. A large proportion of those affected (90%), live in low-income and middle-income countries (LMICs). However, encouragingly, more than 90% of people with vision impairment have a preventable or treatable cause with existing highly cost-effective interventions. Eye conditions affect all stages of life, with young children and older people being particularly affected. Crucially, women, rural populations, and ethnic minority groups are more likely to have vision impairment, and this pervasive inequality needs to be addressed. By 2050, population ageing, growth, and urbanisation might lead to an estimated 895 million people with distance vision impairment, of whom 61 million will be blind. Action to prioritise eye health is needed now. This Commission defines eye health as maximised vision, ocular health, and functional ability, thereby contributing to overall health and wellbeing, social inclusion, and quality of life. Eye health is essential to achieve many of the Sustainable Development Goals (SDGs). Poor eye health and impaired vision have a negative effect on quality of life and restrict equitable access to and achievement in education and the workplace. Vision loss has substantial financial implications for affected individuals, families, and communities. Although high-quality data for global economic estimates are scarce, particularly for LMICs, conservative assessments based on the latest prevalence figures for 2020 suggest that annual global productivity loss from vision impairment is approximately US$410·7 billion purchasing power parity. Vision impairment reduces mobility, affects mental wellbeing, exacerbates risk of dementia, increases likelihood of falls and road traffic crashes, increases the need for social care, and ultimately leads to higher mortality rates. By contrast, vision facilitates many daily life activities, enables better educational outcomes, and increases work productivity, reducing inequality. An increasing amount of evidence shows the potential for vision to advance the SDGs, by contributing towards poverty reduction, zero hunger, good health and wellbeing, quality education, gender equality, and decent work. Eye health is a global public priority, transforming lives in both poor and wealthy communities. Therefore, eye health needs to be reframed as a development as well as a health issue and given greater prominence within the global development and health agendas. Vision loss has many causes that require promotional, preventive, treatment, and rehabilitative interventions. Cataract, uncorrected refractive error, glaucoma, age-related macular degeneration, and diabetic retinopathy are responsible for most global vision impairment. Research has identified treatments to reduce or eliminate blindness from all these conditions; the priority is to deliver treatments where they are most needed. Proven eye care interventions, such as cataract surgery and spectacle provision, are among the most cost-effective in all of health care. Greater financial investment is needed so that millions of people living with unnecessary vision impairment and blindness can benefit from these interventions. Lessons from the past three decades give hope that this challenge can be met. Between 1990 and 2020, the age-standardised global prevalence of blindness fell by 28·5%. Since the 1990s, prevalence of major infectious causes of blindness—onchocerciasis and trachoma—have declined substantially. Hope remains that by 2030, the transmission of onchocerciasis will be interrupted, and trachoma will be eliminated as a public health problem in every country worldwide. However, the ageing population has led to a higher crude prevalence of age-related causes of blindness, and thus an increased total number of people with blindness in some regions. Despite this progress, business as usual will not keep pace with the demographic trends of an ageing global population or address the inequities that persist in each country. New threats to eye health are emerging, including the worldwide increase in diabetic retinopathy, high myopia, retinopathy of prematurity, and chronic eye diseases of ageing such as glaucoma and age-related macular degeneration. With the projected increase in such conditions and their associated vision loss over the coming decades, urgent action is needed to develop innovative treatments and deliver services at a greater scale than previously achieved. Good eye health at the community and national level has been marginalised as a luxury available to only wealthy or urban areas. Eye health needs to be urgently brought into the mainstream of national health and development policy, planning, financing, and action. The challenge is to develop and deliver comprehensive eye health services (promotion, prevention, treatment, rehabilitation) that address the full range of eye conditions within the context of universal health coverage. Accessing services should not bring the risk of falling into poverty and services should be of high quality, as envisaged by the WHO framework for health-care quality: effective, safe, people-centred, timely, equitable, integrated, and efficient. To this framework we add the need for services to be environmentally sustainable. Universal health coverage is not universal without eye care. Multiple obstacles need to be overcome to achieve universal coverage for eye health. Important issues include complex barriers to availability and access to quality services, cost, major shortages and maldistribution of well-trained personnel, and lack of suitable, well maintained equipment and consumables. These issues are particularly widespread in LMICs, but also occur in underserved communities in high-income countries. Strong partnerships need to be formed with natural allies working in areas affected by eye health, such as non-communicable diseases, neglected tropical diseases, healthy ageing, children's services, education, disability, and rehabilitation. The eye health sector has traditionally focused on treatment and rehabilitation, and underused health promotion and prevention strategies to lessen the impact of eye disease and reduce inequality. Solving these problems will depend on solutions established from high quality evidence that can guide more effective implementation at scale. Evidence-based approaches will need to address existing deficiencies in the supply and demand. Strategic investments in discovery research, harnessing new findings from diverse fields, and implementation research to guide effective scale up are needed globally. Encouragingly, developments in telemedicine, mobile health, artificial intelligence, and distance learning could potentially enable eye care professionals to deliver higher quality care that is more plentiful, equitable, and cost-effective. This Commission did a Grand Challenges in Global Eye Health prioritisation exercise to highlight key areas for concerted research and action. This exercise has identified a broad set of challenges spanning the fields of epidemiology, health systems, diagnostics, therapeutics, and implementation. The most compelling of these issues, picked from among 3400 suggestions proposed by 336 people from 118 countries, can help to frame the future research agenda for global eye health. In this Commission, we harness lessons learned from over two decades, present the growing evidence for the life-transforming impact of eye care, and provide a thorough understanding of rapid developments in the field. This report was created through a broad consultation involving experts within and outside the eye care sector to help inform governments and other stakeholders about the path forward for eye health beyond 2020, to further the SDGs (including universal health coverage), and work towards a world without avoidable vision loss. The next few years are a crucial time for the global eye health community and its partners in health care, government, and other sectors to consider the successes and challenges encountered in the past two decades, and at the same time to chart a way forward for the upcoming decades. Moving forward requires building on the strong foundation laid by WHO and partners in VISION 2020 with renewed impetus to ultimately deliver high quality universal eye health care for all

    Grand Challenges in global eye health: a global prioritisation process using Delphi method

    Get PDF
    Background We undertook a Grand Challenges in Global Eye Health prioritisation exercise to identify the key issues that must be addressed to improve eye health in the context of an ageing population, to eliminate persistent inequities in health-care access, and to mitigate widespread resource limitations. Methods Drawing on methods used in previous Grand Challenges studies, we used a multi-step recruitment strategy to assemble a diverse panel of individuals from a range of disciplines relevant to global eye health from all regions globally to participate in a three-round, online, Delphi-like, prioritisation process to nominate and rank challenges in global eye health. Through this process, we developed both global and regional priority lists. Findings Between Sept 1 and Dec 12, 2019, 470 individuals complete round 1 of the process, of whom 336 completed all three rounds (round 2 between Feb 26 and March 18, 2020, and round 3 between April 2 and April 25, 2020) 156 (46%) of 336 were women, 180 (54%) were men. The proportion of participants who worked in each region ranged from 104 (31%) in sub-Saharan Africa to 21 (6%) in central Europe, eastern Europe, and in central Asia. Of 85 unique challenges identified after round 1, 16 challenges were prioritised at the global level; six focused on detection and treatment of conditions (cataract, refractive error, glaucoma, diabetic retinopathy, services for children and screening for early detection), two focused on addressing shortages in human resource capacity, five on other health service and policy factors (including strengthening policies, integration, health information systems, and budget allocation), and three on improving access to care and promoting equity. Interpretation This list of Grand Challenges serves as a starting point for immediate action by funders to guide investment in research and innovation in eye health. It challenges researchers, clinicians, and policy makers to build collaborations to address specific challenge
    corecore