59 research outputs found

    Simple modelling and control of plasma current profile

    Get PDF
    International audienceThe purpose of this paper is to present a simplified model and control law of the current and temperature profile in a tokamak plasma. Based on a description of the plasma as a magnetised uid, the model is expressed in the form of coupled one dimensional transport-diffusion equations. A simple feedback is used to obtain a given stationary profile. The numerical simulations are done in the Scilab/Scicos environment

    Lower hybrid counter-current drive experiment in JET

    Get PDF
    12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)Lower hybrid current drive has been demonstrated to be an efficient tool to modify the current profile in order to access to high energy confinement regimes. Counter-current drive could be an alternative scenario provided the current drive efficiency is not too small when fast electrons flow in the opposite way to the DC electric field. By reversing the toroidal field (Bt=-3.1T) and the plasma current (Ip=-1.45MA), counter current drive with lower hybrid waves has been investigated for the first time in JET. The experiments were carried out at low plasma density ( =1.0 x1019m-3 , ne(0)=1.6 x 1019m-3) with 2.9MW of lower hybrid power. The CRONOS code[1], which couples the diffusion equations to a 2-D equilibrium code, has been used to estimate the RF driven current. Runs indicate that loop voltage and internal inductance are best simulated with a current drive efficiency of –1.0 x 1019 A.W-1.m-2 with a peaked central LH power deposition deduced from DELPHINE[2]. This efficiency is indeed very close to the one found for co-LHCD at similar plasma current and density. Current profile evolves from a hollow profile (with a minimum at r/a ~0) and a maximum at r/a~0.4-0.5) to a rather flat profile (up to r/a=0.3)

    ICRF heating schemes for the ITER non-active phase

    Full text link
    ITER plasma operation requires a non-active phase for tokamak initial commissioning, covering First Plasma and Pre-Fusion Power Operation phases, PFPO-1 and PFPO-2. Non-active operation consists of hydrogen and helium plasmas to minimize the neutron production rate. The present document describes some Ion Cyclotron Radio Frequency (ICRF) heating schemes in terms of their predicted performance for the main foreseen scenarios of the ITER non-active phase in hydrogen and helium. Emphasis is given on remaining issues and physics uncertainties to be addressed for successful ICRF heating in ITER

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≄3.0, ≄4.0, or ≄6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≄24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≀3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≄3.0, 2.0–3.0 to ≄4.0, and 4.0–5.0 to ≄6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≄1.0 or ≄2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≄6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    « A Revolution Through Images ? Looking at French Science Textbooks (Third Republic – 1870-1940) »

    No full text
    International audienc

    Tokamak discharge simulation coupling freeboundary equilibrium and plasma model with application to JT-60SA

    No full text
    International audienceIn order to simulate a full tokamak discharge, a fast integrated tokamak modelling tool for scenario design, METIS, is coupled with a quasi-static free-boundary magnetic equilibrium code, FEEQS. The first code is able to compute at each time the plasma equilibrium, the current density and plasma pressure profiles. The generated outputs are iteratively used by the second code that computes the poloidal field coils currents needed in order to obtain a given plasma shape. This is used to assess the feasibility of scenarios designed by integrated modelling simulations. This approach is much faster with respect to full simulators, equipped with specific feedback controllers, and can be regarded as complementary or preparatory to much more timeconsuming scenario control optimisation. The results obtained with the equilibrium code are benchmarked with data already available and computed using the TOSCA code. To illustrate how the coupled codes work, the optimization of one of the reference scenarios of the JT-60SA tokamak is carried out. The use of this new simulation tool for tokamak scenario design is discussed

    Lyapunov-Based Distributed Control of the Safety Factor Profile in a Tokamak Plasma

    Get PDF
    Abstract. A real-time model-based controller is developed for the tracking of the distributed safety-factor profile in a tokamak plasma. Using relevant physical models and simplifying assumptions, theoretical stability and robustness guarantees were obtained using a Lyapunov function. This approach consider
    • 

    corecore