24 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Electrofission of (sup 239) pu in the energy range 7-12 mev

    No full text
    The electrofission cross section of ²³⁹Pu(e,f) is measured between 7 and 12 MeV. The data are analyzed by means of the virtual photon formalism, assuming that E1, E2 (T=0), and M1 transitions are involved. Using known estimates for the E1 and E2 (T=0) fission strengths, it is deduced an M1 fission strength of 19 ±4μ²N concentrated near the fission barrier (between 5.4 and 5.8 MeV). The levels of the ²³⁹Pu transition nucleus are theoretically obtained; a bunch of positive-parity levels shows up between 5.5 and 5.9 MeV, which might well be associated with the deduced M1 strength, since the E2 strength is negligible in this energy interval

    Cell cycle arrest, extracellular matrix changes and intrinsic apoptosis in human melanoma cells are induced by Boron Neutron Capture Therapy

    Get PDF
    AbstractBoron Neutron Capture Therapy (BNCT) involves the selective accumulation of boron carriers in tumor tissue followed by irradiation with a thermal or epithermal neutron beam. This therapy is therefore a cellular irradiation suited to treat tumors that have infiltrated into healthy tissues. BNCT has been used clinically to treat patients with cutaneous melanomas which have a high mortality. Human normal melanocytes and melanoma cells were treated with BNCT at different boronophenylalanine concentrations for signaling pathways analysis. BNCT induced few morphological alterations in normal melanocytes, with a negligible increase in free radical production. Melanoma cells treated with BNCT showed significant extracellular matrix (ECM) changes and a significant cyclin D1 decrease, suggesting cell death by necrosis and apoptosis and cell cycle arrest, respectively. BNCT also induced a significant increase in cleaved caspase-3 and a decrease in the mitochondrial electrical potential with selectivity for melanoma cells. Normal melanocytes had no significant differences due to BNCT treatment, confirming the data from the literature regarding the selectivity of BNCT. The results from this study suggest that some signaling pathways are involved in human melanoma treatment by BNCT, such as cell cycle arrest, ECM changes and intrinsic apoptosis

    Electrofission of (sup 239) pu in the energy range 7-12 mev

    No full text
    The electrofission cross section of ²³⁹Pu(e,f) is measured between 7 and 12 MeV. The data are analyzed by means of the virtual photon formalism, assuming that E1, E2 (T=0), and M1 transitions are involved. Using known estimates for the E1 and E2 (T=0) fission strengths, it is deduced an M1 fission strength of 19 ±4μ²N concentrated near the fission barrier (between 5.4 and 5.8 MeV). The levels of the ²³⁹Pu transition nucleus are theoretically obtained; a bunch of positive-parity levels shows up between 5.5 and 5.9 MeV, which might well be associated with the deduced M1 strength, since the E2 strength is negligible in this energy interval

    Triton angular distributions from the /sup 7/Li([gama],t)[gama] reaction near threshold

    No full text
    Angular distributions of tritons emitted in the reaction ⁷Li(y,t)α have been measured for two photon energy intervals (6.4–6.7 and 8.5–9.0 MeV), and θt between 30° and 150°. Monochromatic photons from neutron capture reactions of the IPEN/CNEN-SP IEA-R1 research reactor were used. The measured data were analyzed in the framework of an α-cluster model for the ⁷Li structure. Results are in good agreement with a recent measurement of the azimuthal cross section asymmetry

    Triton angular distributions from the /sup 7/Li([gama],t)[gama] reaction near threshold

    No full text
    Angular distributions of tritons emitted in the reaction ⁷Li(y,t)α have been measured for two photon energy intervals (6.4–6.7 and 8.5–9.0 MeV), and θt between 30° and 150°. Monochromatic photons from neutron capture reactions of the IPEN/CNEN-SP IEA-R1 research reactor were used. The measured data were analyzed in the framework of an α-cluster model for the ⁷Li structure. Results are in good agreement with a recent measurement of the azimuthal cross section asymmetry

    Taylor's power law for ecological communities: an explanation on nonextensive/nonlinear statistical grounds

    No full text
    A new idea on how to conceptually interpret the so-called Taylor’s power law for ecological communities is presented. The core of our approach is based on nonextensive/nonlinear statistical concepts, which are shown to be at the genesis of all power laws, particularly when a system is constituted by long-range interacting elements. In this context, the ubiquity of the Taylor’s power law is discussed and addressed by showing that long-range interactions are at the heart of the internal dynamics of populations.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Apoptosis through Bcl-2/Bax and Cleaved Caspase Up-Regulation in Melanoma Treated by Boron Neutron Capture Therapy

    Get PDF
    <div><p>Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and <sup>7</sup>Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT.</p> </div
    corecore