50 research outputs found

    Host–microbiome intestinal interactions during early life: considerations for atopy and asthma development

    Get PDF
    Purpose of review: The body's largest microbial community, the gut microbiome, is in contact with mucosal surfaces populated with epithelial, immune, endocrine and nerve cells, all of which sense and respond to microbial signals. These mutual interactions have led to a functional coevolution between the microbes and human physiology. Examples of coadaptation are anaerobes Bifidobacteria and Bacteroides, which have adjusted their metabolism to dietary components of human milk, and infant immune development, which has evolved to become reliant on the presence of beneficial microbes. Current research suggests that specific composition of the early-life gut microbiome aligns with the maturation of host immunity. Disruptions of natural microbial succession patterns during gut colonization are a consistent feature of immune-mediated diseases, including atopy and asthma. Recent findings: Here, we catalog recent birth cohorts documenting associations between immune dysregulation and microbial alterations, and summarize the evidence supporting the role of the gut microbiome as an etiological determinant of immune-mediated allergic diseases. Summary: Ecological concepts that describe microbial dynamics in the context of the host environment, and a portray of immune and neuroendocrine signaling induced by host–microbiome interactions, have become indispensable in describing the molecular role of early-life microbiome in atopy and asthma susceptibility

    The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods

    Get PDF
    An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term ‘fermented’ led the panel to define fermented foods and beverages as “foods made through desired microbial growth and enzymatic conversions of food components”. This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines

    The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods

    Get PDF
    An expert panel was convened in September 2019 by The International Scientific Association for Probiotics and Prebiotics (ISAPP) to develop a definition for fermented foods and to describe their role in the human diet. Although these foods have been consumed for thousands of years, they are receiving increased attention among biologists, nutritionists, technologists, clinicians and consumers. Despite this interest, inconsistencies related to the use of the term ‘fermented’ led the panel to define fermented foods and beverages as “foods made through desired microbial growth and enzymatic conversions of food components”. This definition, encompassing the many varieties of fermented foods, is intended to clarify what is (and is not) a fermented food. The distinction between fermented foods and probiotics is further clarified. The panel also addressed the current state of knowledge on the safety, risks and health benefits, including an assessment of the nutritional attributes and a mechanistic rationale for how fermented foods could improve gastrointestinal and general health. The latest advancements in our understanding of the microbial ecology and systems biology of these foods were discussed. Finally, the panel reviewed how fermented foods are regulated and discussed efforts to include them as a separate category in national dietary guidelines

    Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting.

    Get PDF
    BACKGROUND: Asthma is the most prevalent chronic disease of childhood. Recently, we identified a critical window early in the life of both mice and Canadian infants during which gut microbial changes (dysbiosis) affect asthma development. Given geographic differences in human gut microbiota worldwide, we studied the effects of gut microbial dysbiosis on atopic wheeze in a population living in a distinct developing world environment. OBJECTIVE: We sought to determine whether microbial alterations in early infancy are associated with the development of atopic wheeze in a nonindustrialized setting. METHODS: We conducted a case-control study nested within a birth cohort from rural Ecuador in which we identified 27 children with atopic wheeze and 70 healthy control subjects at 5 years of age. We analyzed bacterial and eukaryotic gut microbiota in stool samples collected at 3 months of age using 16S and 18S sequencing. Bacterial metagenomes were predicted from 16S rRNA data by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States and categorized by function with Kyoto Encyclopedia of Genes and Genomes ontology. Concentrations of fecal short-chain fatty acids were determined by using gas chromatography. RESULTS: As previously observed in Canadian infants, microbial dysbiosis at 3 months of age was associated with later development of atopic wheeze. However, the dysbiosis in Ecuadorian babies involved different bacterial taxa, was more pronounced, and also involved several fungal taxa. Predicted metagenomic analysis emphasized significant dysbiosis-associated differences in genes involved in carbohydrate and taurine metabolism. Levels of the fecal short-chain fatty acids acetate and caproate were reduced and increased, respectively, in the 3-month stool samples of children who went on to have atopic wheeze. CONCLUSIONS: Our findings support the importance of fungal and bacterial microbiota during the first 100 days of life on the development of atopic wheeze and provide additional support for considering modulation of the gut microbiome as a primary asthma prevention strategy

    Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective

    No full text
    Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease

    18s reads zip files

    No full text
    This is the sequencing data used for the paper Nieves-Ramírez, M., Partida-Rodríguez, O., Laforest-Lapointe, I., Reynolds, L., Brown, E., Valdez-Salazar, A., Morån Silva, P., Morien, E., Wegener-Parfrey, L., Minglian, J., Walter, J., Arrieta, M.C., Ximénez-García, C. & Finlay, B.B. Asymptomatic Intestinal Colonization with Protozoan Blastocystis sp. is Strongly Associated with Distinct Microbiome Ecological Patterns. mSystems, (In press)

    Fasta zip files

    No full text
    This is the sequencing data used for the paper Nieves-Ramírez, M., Partida-Rodríguez, O., Laforest-Lapointe, I., Reynolds, L., Brown, E., Valdez-Salazar, A., Morån Silva, P., Morien, E., Wegener-Parfrey, L., Minglian, J., Walter, J., Arrieta, M.C., Ximénez-García, C. & Finlay, B.B. Asymptomatic Intestinal Colonization with Protozoan Blastocystis sp. is Strongly Associated with Distinct Microbiome Ecological Patterns. mSystems, (In press).<br

    Probiotics to improve the gut microbiome in premature infants: are we there yet?

    No full text
    ABSTRACTGut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants
    corecore