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Abstract  22 

Purpose of review: The body’s largest microbial community, the gut 23 

microbiome, is in contact with mucosal surfaces populated with epithelial, 24 

immune, endocrine and nerve cells, all of which sense and respond to 25 

microbial signals. These mutual interactions have led to a functional co-26 

evolution between the microbes and human physiology. Examples of co-27 

adaptation are anaerobes Bifidobacteria and Bacteroides, which have adjusted 28 

their metabolism to dietary components of human milk, and infant immune 29 

development, which has evolved to become reliant on the presence of 30 

beneficial microbes. Current research suggests that specific composition of 31 

the early-life gut microbiome aligns with the maturation of host immunity. 32 

Disruptions of natural microbial succession patterns during gut colonization 33 

are a consistent feature of immune-mediated diseases, including atopy and 34 

asthma. 35 

Recent findings: Here we catalog recent birth cohorts documenting 36 

associations between immune dysregulation and microbial alterations, and 37 

summarize the evidence supporting the role of the gut microbiome as an 38 

etiological determinant of immune-mediated allergic diseases. 39 

Summary: Ecological concepts that describe microbial dynamics in the context 40 

of the host environment, and a portray of immune and neuroendocrine signaling 41 

induced by host-microbiome interactions, have become indispensable in 42 

describing the molecular role of early-life microbiome in atopy and asthma 43 

susceptibility. 44 

  45 
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Introduction 46 

The human gastrointestinal tract hosts the most abundant and diverse 47 

community of microorganisms in the body, the gut microbiome (1). Many of 48 

these microbial species interact with the intestinal mucosa that includes the 49 

gut-associated lymphoid tissue (GALT), composed of more than 70% of all host 50 

immune cells. Besides local interactions, microbes modulate cells in more 51 

distant tissues and organs through their metabolites and other bioactive 52 

molecules that enter the bloodstream. Pioneering studies with germ-free (GF) 53 

animals were first to show that the absence of commensal microbes profoundly 54 

alters the immune system's structural and functional development (2, 3). 55 

Besides defects in lymphoid tissue within the spleen, thymus, and lymph 56 

nodes, the GALT of GF animals display structural abnormalities near the 57 

mucosal interface (4, 5) and an immune phenotype with a distorted ratio of 58 

different T cell types (6). These deficits can be fully corrected by 59 

introducing commensal microbiota exclusively during early life (7, 8), firmly 60 

establishing that postnatal microbial colonization modulates the immune 61 

system development. 62 

An increasing number of studies is drawing attention to the microbiome as an 63 

essential element determining the transition from health to disease and vice 64 

versa (9). Epidemiological research on the effects of prenatal and postnatal 65 

exposures has pointed out the association between perturbations of the gut 66 

microbiome composition early in life and immunological dysregulation 67 

affecting the risk of allergic diseases such as atopy and asthma (10-13). 68 

Infants at increased risk of childhood atopy and/or asthma have 69 

characteristic gut microbiome that exhibits depletion of specific bacterial 70 

genera, fungal expansion and altered microbial metabolic function (Table 1). 71 

In this review, we outline the current ecological understanding of early-life 72 

interactions between the host and the gut microbiome that modulate immune 73 
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responses relevant to the development of atopy and asthma. We discuss how 74 

microbiota sets the tone of allergen-specific responses as an immunological 75 

priming event, as well as the roles of specific type 2 T helper cells (Th2) 76 

and innate lymphoid cells. Lastly, we review recently revealed microbiome-77 

derived signals that impact the neuroendocrine system, which is capable of 78 

modulating immune mechanisms in allergic responses, further underscoring the 79 

overall complexity of allergic diseases etiology (Figure 1). 80 

Gut microbiome maturation and adaptation during early life 81 

The human host and its microbiome have coevolved in a complex relationship 82 

that combines the host control of the microbial growth and microbial 83 

competition for resources in the host environment (14, 15). This process has 84 

led to a mutualistic symbiosis in which the microbiome augments host 85 

physiological processes, and the host provides a nutritious and hospitable 86 

environment for the microbes. The gut microbiome develops with age and 87 

reflects the history of exposures to external factors, beginning with those 88 

encountered during pregnancy (16). In the case of vaginal birth, the infant 89 

microbiota composition is initially driven by selective seeding with maternal 90 

gut strains (17, 18) and becomes gradually dominated by anaerobic species of 91 

the Bifidobacteria and Bacteroides genera. The maturation of the gut 92 

microbiome appears to happen in an orchestrated manner, and the timing of 93 

microbial succession may be biologically determined (19, 20). Integrative 94 

analyses of metagenomic data from 34 longitudinal studies worldwide revealed 95 

common patterns in the relative abundance of the five most abundant bacterial 96 

taxa in vaginally born infants. The same bacteria displayed delayed 97 

colonization in infants born by caesarian section (C-section), as reported 98 

previously (21). By the age of 12 months, major differences in the gut 99 

microbiota composition caused by the mode of birth seem to disappear, and 100 

this is also true for microbiomes affected by early-life antibiotic use (19). 101 
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Considering that the factors that drastically alter the gut microbiota 102 

composition, including C-section, formula feeding, and antibiotic use, are 103 

also well-established risk factors for asthma (22), it is likely that even 104 

transient differences in the microbiota succession pattern may have long-term 105 

effects on the immunological development of the host. 106 

Applying the theoretical framework of microbial and community ecology can 107 

help explain the connection between early life microbiome composition and 108 

later health outcomes. An experimental study that compared sequential order 109 

of microbial colonization in mice showed that the timing of bacterial arrival 110 

in the gut has lasting effects on the overall composition of the microbiota 111 

(23). This phenomenon, also known as priority effects, influenced how the 112 

bacterial community assembled and how ecologically successful the individual 113 

colonizers were. Human longitudinal studies provide additional evidence that 114 

discernible early life microbiomes associate with different microbial 115 

successional trajectories and health outcomes (Table 1). For example, infants 116 

at high risk of asthma differ from low-risk babies by a distinct meconium 117 

microbiota and a delay in the gut microbiota diversification over the first 118 

year of life (13). Pioneer microbial species that initially populate the 119 

infant gut might, therefore, not only impact the ecological succession of 120 

microbes, and the resulting microbiome functional traits but very likely also 121 

have a strong influence on immune tolerance and inflammation (1, 24, 25). 122 

Another characteristic of infant gut microbiome is its low resilience, i.e., 123 

a reduced capacity of the microbial ecosystem to maintain and return to a 124 

steady state in response to an external perturbation (1). The gut microbiome 125 

during early life displays a lower species richness and overall microbial 126 

diversity in contrast to the adult gut microbiome (26), in which a large 127 

number of bacterial strains perform similar functions (27). Compared to the 128 

substantial functional redundancy observed in adults, infant microbial 129 
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communities do not have the same functional overlap and are more prone to 130 

loss of composition and functional traits upon external disturbances. This 131 

aspect makes the infant gut microbiome highly unstable during the first year 132 

of life. 133 

One of the first colonizers of the human intestine that commonly dominate the 134 

gut during breastfeeding and dissipate through life are Bifidobacteria. 135 

Normal immune maturation appears to be dependent on this bacterial genus, 136 

since atopic infants display reduced bifidobacterial levels in their stool 137 

(28), and airway inflammation in murine model of asthma can be reduced by gut 138 

colonization with a B. breve strain (29). From an evolutionary perspective, 139 

increased abundance of maternal gut bifidobacteria during pregnancy 140 

facilitates their vertical transmission from mother to newborn (30). The 141 

species colonization success is further enhanced by their unique ability to 142 

metabolize human milk oligosaccharides (31). A current study by Duranti et 143 

al. looked into genetic adaptations that promote bifidobacteria-dominant 144 

microbiome during infancy, and illustrated how different bifidobacterial taxa 145 

have co-evolved to maximize their colonization capabilities through efficient 146 

resource sharing (32). 147 

Adaptation of immune system to intestinal microbes in the context of atopic 148 

asthma etiology 149 

Vaginal delivery and subsequent breastfeeding period reinforces 150 

Bifidobacterium as a keystone species of the infant microbiome (33). High 151 

bifidobacterial levels, which can reach up to 80% of the total gut microbiota 152 

(34), temporally correlate with critical stages of immune cell maturation 153 

(35, 36). Along with other prominent human commensals such as Bacteroides 154 

fragilis (37), Lactobacillus reuteri (38), and Clostridium spp. (39, 40), B. 155 

bifidum can induce Foxp3+ regulatory T cells (Tregs) (41), a subpopulation of 156 
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T cells fundamental in promoting and maintaining mucosal tolerance to 157 

allergens (42). Mediating mechanisms of Tregs induction differ among species, 158 

either via cell surface polysaccharides (B. bifidum, L. reuteri, and B. 159 

fragilis) or through the production of short-chain fatty acids (SCFA) 160 

(Clostridium sp.), resulting in the release of anti-inflammatory interleukin 161 

(IL)-10. The signaling pathways of this interaction involve Toll-like 162 

receptors and MyD88 signal transducer and favor the production of 163 

immunoglobulin (Ig) A, which is essential to mucosal immunity and balanced 164 

gut microbiota (43). Tregs specific for luminal antigens are the primary 165 

negative regulators of inflammatory responses, maintaining responses of other 166 

immune cells, such as Th2, within a normal range. Failure to suppress an 167 

excessive Th2 response has been considered a hallmark of asthma and other 168 

allergic diseases. 169 

Induced Tregs are derived from the interaction of naïve T cells with antigen-170 

presenting dendritic cells (DCs) (44), which are critical regulators of T 171 

cell responses and interact closely with the gut microbiome. A recent animal 172 

study demonstrated that DCs produce a cytokine milieu that promotes Tregs 173 

differentiation, as intraperitoneal administration of DCs reduced airway 174 

inflammation in a model of allergic inflammation triggered by dust mite (45). 175 

Conversely, a pro-inflammatory lipid commonly found in feces of infants at 176 

risk of atopy and asthma (12,13-diHOME) reduced in vitro anti-inflammatory 177 

cytokine secretion in human DCs (46). 178 

In line with the view of commensal-induced antigen tolerance, GF mice cannot 179 

be tolerized to oral antigens, have reduced levels of IL-10-producing Tregs 180 

and IgA antibodies, abnormally high serum levels of the allergic marker IgE, 181 

and overall phenotype characterized by a Th2 cell–biased immune response (47-182 

50). Although the susceptibility of the Th2 responses can be restored in GF 183 

animals by introducing commensal bacteria, this strategy is only effective 184 
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when done within a narrow early life window, emphasizing the essential role 185 

of microbes in immune system priming. In addition to these mechanistic 186 

studies in mice, a recent study in two European longitudinal infant cohorts 187 

revealed that microbiome features linked with asthma protection were 188 

associated with increased tolerance to bacterial lipopolysaccharide 189 

(LPS)(51), suggesting that microbiome-induced mucosal tolerance is a critical 190 

mechanism of preventing allergic responses. 191 

Among the molecular mechanisms that promote and maintain mucosal tolerance to 192 

luminal antigens is the differentiation of induced Tregs expressing the 193 

transcription factor RORγt in the draining lymph nodes of the small intestine 194 

(52). The gut microbiota, and bacterial commensals of the order Clostridiales 195 

and Bacteroidales in particular, has been reported to elicit the RORγt+ Tregs 196 

induction (53, 54). Abdel-Gadir et al. recently showed that infants with food 197 

allergy display dysbiotic fecal microbiota accompanied by decreased IgA and 198 

increased IgE levels, and deficiency of RORγt+ Tregs (55). In mouse models, 199 

the absence of RORγt+ Tregs results in dysregulated Th2 (53) and Th17 cell 200 

responses (54). In addition, mice genetically engineered to be prone to food 201 

allergy have altered gut microbiota (56) and impaired generation of allergen-202 

specific Tregs, whose function was marked by Th2-like reprogramming (57). 203 

Microbiota-induced Tregs RORγt+ differentiate along a pathway that also 204 

promotes Th17 immune responses (53). Several studies demonstrated that Th17 205 

cells co-exist in a well-regulated balance with Foxp3+ Tregs, which is 206 

dependent on the composition of the intestinal microbiota (58). Details of 207 

how the intestinal microbiota controls the Th17 development remain unclear 208 

but may involve the understudied fungal microbiota, or mycobiota (59, 60). 209 

Th17 cells are abundantly present under a steady-state condition in the small 210 

intestinal lamina propria where they act protectively during extracellular 211 

bacterial and fungal invasion by producing pro-inflammatory cytokines IL-17 212 
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and IL-22. At the same time, excessive Th17 responses have been implicated in 213 

lung pathogenesis in response to exogenous stimuli (61, 62). 214 

In addition to modulating dendritic and T cells responses to reduce 215 

inflammation and promote commensal immune reactions, the gut microbiome acts 216 

on other cell types, including epithelial cells (63), basophils (64), 217 

macrophages (65, 66) and innate lymphoid cells (ILC) (67). The past decade 218 

has witnessed the discovery of ILC, the innate counterparts of T cells that 219 

play essential roles during early life when the adaptive immunity has not 220 

been fully developed (68). It is important to note that composition, 221 

development, and function of ILC is regulated by the gut microbiome (69). 222 

From three distinct ILC types (ILC1, ILC2, ILC3), ILC2 promote type 2 223 

immunity in an antigen-independent manner and secrete IL-5 and IL-13 224 

cytokines that induce eosinophilic inflammation, mucin overproduction, and 225 

tissue remodeling. Experiments in mice and human cohort studies identified 226 

the role of ILC2 in causing airway hyperreactivity and eosinophilic 227 

inflammation and suggested that ILC2 are involved in allergic asthma 228 

development and exacerbation (70-74). ILC2 have been found in intestinal 229 

lamina propria as well as in circulating blood and lungs of both healthy and 230 

asthmatic subjects (73), and ILC2 accumulation in airways appears to be 231 

driven by cytokine IL-33 and chemokine CXCL16 in murine models of asthma 232 

(75). However, parabiosis studies in which mice are surgically joined, and 233 

thus develop a shared blood circulation, showed that ILC2 cells found in 234 

lungs did not circulate in either steady-state conditions or inflammatory 235 

conditions (76, 77), suggesting that the ILC2 accumulation in lungs mostly 236 

results from the proliferation of a tissue resident ILC2 population. Still, 237 

there appears to be a crosstalk between cells responsible for gut and 238 

pulmonary immune homeostasis that might determine respiratory immune 239 

responses to airborne allergens, irritants and respiratory viruses (78). In 240 



10 
 

relation to the latter, early-life respiratory viral infections are well-241 

known factor associated with an increased risk of developing childhood asthma 242 

(79). The bi-directional relationship between lungs and gut is evident from 243 

studies describing, for example, intestinal complications following viral 244 

respiratory infection (80), oral antibiotic treatment impairing pulmonary 245 

host defense (81), and commensal fungus gut colonization modulating invasive 246 

fungal lung infection (60). The lung microbiome plays a vital role in 247 

promoting airway tolerance (82), and alterations of lower airway microbiota 248 

has been linked to the severity of airway obstruction (83). Moreover, a 249 

recent study showed that microbial diversity and the relative abundances of 250 

Gram-negative bacteria Veillonella and Prevotella in the airways at age one 251 

month are associated with asthma by age 6 years (84). However, it remains to 252 

be elucidated whether lung microbial dysbiosis drives or reflects immune 253 

hyperreactivity. 254 

Emerging role of the neuroendocrine system as a key player tuning the balance 255 

between immune system and intestinal microbiota 256 

Besides the crosstalk between ILCs and intestinal microbiome, ILCs co-257 

localize and functionally interact with cells of the enteric nervous system 258 

(ENS) and neuroendocrine cells. Contained within the lamina propria, these 259 

cells share a common biochemical language, consisting of cytokines, 260 

chemokines, neuropeptides, neurotransmitters, hormones, and related 261 

receptors, which enable them to respond to the same signals and interact with 262 

each other (85). Analogous to the GALT, the ENS is the largest and most 263 

complex part of the peripheral nervous system, and, unsurprisingly, the gut 264 

microbiota regulates the postnatal maturation of ENS (86). Enteric glial 265 

cells, the supportive cells for enteric neurons located in the lamina 266 

propria, can directly modulate ILC3 cytokine release (84), sense the 267 

microbiota as well as tissue damage, and respond to host-derived alarmin 268 
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cytokines IL-1β and IL-33 (87). It is noteworthy that the IL-1β and IL-33 269 

have been recently shown to differentially regulate the functional adaptation 270 

of Foxp3+ Tregs during mucosal inflammation (88). 271 

In the context of asthma and other allergic diseases, neuronal regulation of 272 

ILC2 can modulate the induction of type 2 inflammation. As first evidenced in 273 

a murine model (89), ILC2 colocalize with adrenergic neurons in the intestine 274 

and express the β2-adrenergic receptor (β2AR), which interacts with the 275 

neurotransmitter epinephrine (adrenaline), a representative of 276 

catecholamines. The same study demonstrated that β2AR signaling suppresses 277 

ILC2 proliferation, while β2AR-deficient mice exhibited exaggerated ILC2-278 

mediated type 2 inflammation in the intestine and lungs. Thus, catecholamines 279 

such as adrenaline, noradrenaline, and dopamine may have the capacity to 280 

suppress ILC2 and regulate type 2 inflammation. Other β2AR agonists, such as 281 

Ventolin, have been commonly used in pulmonology as bronchodilators, the 282 

first line inhaled medications used to treat asthma. From the microbiota 283 

perspective, catecholamines act as signals in the gut lumen (90), and 284 

noradrenaline levels in the cecal and colonic contents of specific-pathogen-285 

free mice are substantially higher than those in GF mice. Although the gut 286 

microbiota can produce or stimulate the production of neurotransmitters such 287 

as serotonin (91), GABA and dopamine (92), their exact contribution to the 288 

levels of the neuroactive compounds remains to be determined (93). Finally, 289 

catecholamines and other biogenic amine neurotransmitters are potent hormones 290 

primarily released during the body’s stress response (89), which has a strong 291 

effect on the gut microbiome composition (94). 292 

Prenatal and neonatal stress is yet another strong risk factor for asthma 293 

(95). Among the biological pathways by which stress amplifies the immune 294 

responses in asthma is cortisol metabolism and the hypothalamic-pituitary-295 

adrenal (HPA) axis (Figure 1), which is essential for normal neuroendocrine 296 
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adaptation to stress. Inflammatory mediators, including cytokines and 297 

prostaglandins, are potent activators of the HPA axis (96), leading to the 298 

release of glucocorticoids that have inhibitory effects on a broad range of 299 

immune responses. The HPA axis dysfunction in asthma has been suggested by an 300 

animal model of bronchial asthma in which exposure to early life stress 301 

increased the number of eosinophils and total mononuclear cells (97). Early 302 

life events program the sensitivity of the HPA axis to stress (98), and 303 

multiple evidence supports the role of the gut microbiota in this process. An 304 

early groundbreaking study showed that when neonatal rats are exposed to 305 

bacterial LPS (endotoxin), they exhibit significantly greater hormonal 306 

responses to stress, a decreased glucocorticoid feedback inhibition of the 307 

HPA axis in adulthood, and reduced glucocorticoid receptor density in the 308 

brain (99). Further, SCFA produced by the gut microbiota influence the 309 

maturation of intestinal enteroendocrine cells and microglia, the latter 310 

being cytokines releasing neuro-immune cells that activate the HPA axis. In a 311 

series of animal experiments, Erny and colleagues showed that GF mice or 312 

antibiotic-treated animals displayed global defects in microglia, leading to 313 

impaired innate immune responses (100). The gut microbiome thus profoundly 314 

impacts the normal functioning of the HPA axis that is necessary for 315 

diminishing ongoing allergic reactions. 316 

The gut microbiome as a therapeutic target for atopy and asthma prevention 317 

strategies 318 

Given the documented link between alterations of the early life gut 319 

microbiome and the risk of atopy and asthma, there has been rising interest 320 

in the role of probiotics, including bacterial strains of the Lactobacillus 321 

and Bifidobacterium genera, for the prevention and treatment of the immune-322 

mediated disorders. However, an extensive body of research on probiotics has 323 

not yet been translated into clearly defined health benefits or clinical 324 
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recommendations (101-103). Part of the issue is the substantial heterogeneity 325 

in the strains used, their dosage, use of different prebiotics, as well as in 326 

the timing and duration of the interventions among various studies. Although 327 

several systematic reviews and meta-analyses showed a benefit in some 328 

probiotic administrations to both mothers during pregnancy and infants in 329 

their first month of life for the prevention of atopic dermatitis (104-106), 330 

currently, there is not enough scientific evidence that would support a 331 

general use of probiotics in the prevention of atopy and asthma. 332 

Similarly, the role of breastfeeding in preventing allergic diseases has 333 

gained significant attention. Breastmilk shapes the infant’s gut microbiota 334 

by delivering live microorganisms present in the milk and maternal skin, as 335 

well as active immune factors and prebiotic oligosaccharides that affect 336 

bacterial growth and metabolism. Even though there is significant discrepancy 337 

regarding the effect of breastmilk on allergic diseases development (107), 338 

both rodent and human studies suggest that breastmilk factors modulate 339 

essential aspects of infant gut physiology, such as gut barrier function, gut 340 

microbiota composition and associated metabolites production, and oral 341 

tolerance induction (108-111). Variations in breastmilk immune and microbial 342 

composition (112, 113), together with differences in the infant gut 343 

microbiota response, can in part explain why breastfeeding seems to have an 344 

inconsistent relationship with allergy and asthma prevention. For example, a 345 

study of 40 mother-child dyad identified that breastmilk from mothers whose 346 

children developed allergic symptoms during early childhood had lower 347 

bacterial richness when compared to milk that was consumed by children 348 

without the symptoms (114). Maternal lifestyle, including dietary habits and 349 

physical activity, have a considerable influence on breastmilk composition, 350 

as well as pre- and post-natal probiotic supplementations that can alter the 351 

breastmilk microbiota composition and subsequently the infant’s gut microbial 352 
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colonization (114, 115). A number of longitudinal birth-cohort studies 353 

currently seeks to determine the effects of probiotic use on later health 354 

outcomes (116, 117), still, more hypothesis-driven research is needed before 355 

commencing with intervention trials in large populations. Nonetheless, 356 

current findings emphasize that the immunological and microbial interactions 357 

between mother and infant are critical factors in the child immune 358 

development and indicate the possibility of modulating microbiota of pregnant 359 

and breastfeeding women as a strategy to promote healthy gut microbial 360 

colonization and normal immune maturation (111). 361 

Conclusions and future directions 362 

The balance between effector, tolerogenic, and regulatory immune mechanisms 363 

relies on continuous microbial signals, especially during early life. 364 

Emerging evidence suggests that infant’s immune maturation is synchronized 365 

with specific microbial molecules that match gradual gut colonization by 366 

microbes adapted to the early life diet. Our modern lifestyle has been 367 

remodeling the early life microbiome, and human birth cohort studies are 368 

increasingly connecting individual microbial species with the risk of immune-369 

mediated diseases. Animal studies studying perturbations of the early-life 370 

microbiome in the context of whole-body physiology will expand the 371 

mechanistic understanding of the strains function and interactions with host 372 

cells. Ultimately, the findings from in vivo models need to be translated 373 

back into human trials that can inform the development of future microbiome-374 

based health interventions, for example, for asthma prevention. 375 

Key points: 376 

 Host–microbiome interactions in early life play a central role in 377 

intestinal and pulmonary immune maturation and development, however, 378 

only few functional analyses of these interactions have been described. 379 
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 Birth cohort longitudinal studies that explore details of early life 380 

exposures have become instrumental in describing the bidirectional 381 

relationship between the gut microbiome and the onset of allergic 382 

diseases, including asthma. 383 

 The alliance of translational microbiology, gnotobiotic animal models, 384 

and high-throughput molecular approaches has become essential to 385 

describe properties of individual gut microbes that might impact host 386 

physiological systems and allergic diseases susceptibility. 387 

 The use of probiotics as a prevention strategy for immune-mediated 388 

diseases is currently under question and not yet fully supported by 389 

scientific evidence, as the most favorable strains and their dosages, 390 

together with timing and duration of the probiotic administration still 391 

need to be ascertained. 392 
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Figure 1. Early life host-microbiome interactions influencing atopy and 762 

asthma development. External environmental factors shape the gut and lung 763 

microbiome in early life and can cause perturbations that lead to immune-764 

mediated allergic diseases such as atopy and asthma. Gut microbiome 765 

composition can dictate susceptibility to allergen-specific responses, which 766 

are a result of interactions between microbial molecules and immune cells. 767 

Perturbations of the early life microbiome might mediate alterations in the 768 

number of regulatory T cells (Tregs), type 2 helper (Th2) and Th17 cells, as 769 

well as in the cytokine and antibody milieu. Changes that have been 770 

associated with asthmatic immune phenotype are indicated, including 771 

increase/decrease of specific interleukins (IL) and immunoglobulins (Ig). 772 

Microbiome-derived signals also impact the neuroendocrine system, which is 773 

capable of modulating immune mechanisms in allergic responses via the 774 

hypothalamic-pituitary-adrenal (HPA) axis and dysregulation of cortisol 775 

release. White arrows indicate adrenal gland on top of the kidney and 776 

hypothalamus located in the brain above the pituitary gland. Microbiome 777 

composition can also influence the activities of microglia (Glia), neurons 778 

and neuroendocrine cells (NECs), which are known to interact with immune 779 

cells relevant in the pathogenesis of asthma. 780 
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Table 1 Prospective birth cohort studies combining microbiome analysis and determination of atopy and 1 

asthma risk 1. 2 

Authors & 
Years 

Main objectives(s) 
Birth 
Cohort 
Acronym 

Study 
Population2 

Samples 
Collected 

Techniques to 
assign bacterial 
and fungal taxa, 
and for metabolite 

detection 

Key findings Reference 

Kirjavainen 
et al. 2019 

To identify microbial 

exposures that could be 
exploited for preventive 
interventions of asthma. 

LUKAS1&2, 
GABRIELA 

Children ≤ 

6 years, 
N=395+1031 

Living 
room 

floor 
dust 

samples 

16S rRNA gene and 

ITS region 
amplicon 
sequencing 

By modeling differences in house dust 
microbiota between farm and non-farm homes 
of Finnish families, the authors showed that 

in children growing up in non-farm homes, 
asthma risk decreases when their home 
bacterial composition is more similar to 
farm homes. 

(51) 

Levan et al. 
2019 

To determine whether 
elevated faecal 
concentrations of 12,13-
diHOME promote allergic 
inflammation by inducing 
DCs dysfunction, resulting 
in a subsequent reduction 
in the number of anti-
inflammatory Treg cells.  

Subsets 
of the 
WHEALS 
and TIPS 
cohorts 

Infants 1 
month old, 
N=41+50 

Stool 

Shotgun 
metagenomic 
sequencing, LC–MS 
metabolomic 
analyses 

Increase in the copy number of bacterial 
epoxide hydrolase genes among the gut 
microbiota or the concentration of 12,13-
diHOME in infants feces, was associated with 
an increased probability of developing 
atopy, eczema or asthma during childhood. 

(46) 

Arrieta et. 
al. 2018 

To explored whether similar 
microbiome patterns (as 
observed in Canada) can be 
observed in a 
geographically distinct 
population with similar 
reported rates of asthma 
prevalence to Canada. 

ECUAVIDA 
Infants 3 
months old 
N=97 

Stool 

16S rRNA gene and 
18S region 
amplicon 
sequencing, LC/MS 
metabolomic 
analyses 

Microbial dysbiosis in 3 months-old 
Ecuadorian infants was associated with later 
development of atopic wheeze. The dysbiosis 

was characterized by abundance changes in 
several bacterial taxa (Streptococcus sp., 
Bacteroides sp., Ruminococcus gnavus, 
Bifidobacterium) and increase in relative 
abundance of fungi Pichia kudriavzevii. 
Levels of the fecal short-chain fatty acids 
acetate and caproate were reduced and 
increased, respectively, in the stool 
samples of children who went on to have 
atopic wheeze. 

(12) 

Durack et 
al. 2018 

To determine whether 
neonates at high risk for 
asthma exhibit meconium gut 
microbiota dysbiosis and a 
reduced rate of gut 
bacterial diversification 

over the first year of 
life. 

Subset of 
TIPS and 
DIMES 
cohorts 

Infants ≤ 
12 months 
old, 
N=25+29 

Stool 

16S rRNA gene 
amplicon 
sequencing, LC/MS 
metabolomic 

analyses 

Children at high risk for asthma, exhibited 
a distinct meconium microbiota, delayed gut 
microbial diversification and were depleted 
for a range of anti-inflammatory fecal 
lipids in infancy. These deficits were 
partly rescued by Lactobacillus rhamnosus 

supplementation. However, this effect was 
lost after cessation of the supplementation. 

(13) 

Stokholm et 
al. 2018 

To analyze the nature of 
gut colonization patterns 
during the first year of 
life, and the associations 
of these patterns with the 
later risk of asthma. 

COPSAC2010 
Children ≤ 
5 years, 
N=690 

Stool 
16S rRNA gene 
amplicon 
sequencing 

One-year-old children with an immature gut 
microbiota composition had an increased risk 
of asthma at age 5 years. This effect was 
only apparent in children born to asthmatic 
mothers, and especially characterized an 
asthma phenotype also comprising allergic 
sensitization. 

(118) 
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Wopereis et 
al. 2018 

To investigate the effects 
of interventions and 
breast-feeding on fecal 
microbiota. Additionally, 
to identify microbial 
patterns associated with 
the onset of eczema. 

PATCH 

Infants in 
the first 
26 weeks 
N=138 

Stool 
16S rRNA gene 
amplicon 
sequencing 

Infants with eczema by 18 months showed 
discordant development of bacterial genera 
of Enterobacteriaceae and Parabacteroides 
species in the first 26 weeks, as well as 
decreased acquisition of lactate-utilizing 
bacteria producing butyrate.  

(119) 

Fujimura et 
al. 2016 

To investigate whether 
compositionally distinct 
human neonatal gut 
microbiota exist and is 
differentially related to 
relative risk of childhood 
atopy and asthma. 

Subset of 
WHEALS 

Infants 1-
11 months 
N=97 

Stool 
16S rRNA gene 
amplicon 
sequencing 

American infants at risk of asthma showed 
lower relative abundance of certain bacteria 
(Bifidobacterium, Akkermansia and 
Faecalibacterium), higher relative abundance 
of particular fungi (Candida and 
Rhodotorula) and a distinct fecal metabolome 
enriched for pro-inflammatory metabolites. 
Ex vivo culture of human adult peripheral T 
cells with sterile fecal water from infants 
having a high risk of asthma increased the 
proportion of CD4+ cells producing 
interleukin (IL)-4 and reduced the relative 
abundance of CD4+CD25+FOXP3+ cells. 

(11) 

Arrieta et. 
al. 2015 

To elucidate the factors 
involved in asthma and 
atopic disease development. 

Subset of 
CHILD 

Infants 3- 
and 12-
months old 
N=312 

Stool  
16S rRNA gene 
amplicon 
sequencing 

The study for the first time reported that 
infants at risk of asthma have transient gut 
microbial dysbiosis during the first 100 
days of life with significantly decreased 
relative abundance of the bacterial genera 
Lachnospira, Veillonella, Faecalibacterium, 
and Rothia. The reduction in bacterial taxa 
was accompanied by reduced levels of fecal 
acetate and dysregulation of enterohepatic 
metabolites. 

(10) 

1 Abbreviations used: ITS - internal transcribed spacer, LC-MS - liquid chromatography mass spectrometry, 3 

12,13-diHOME – 12,13-dihydroxy-9Z-octadecenoic acid, DCs – Dendritic cells 4 

2 Multiple numbers refer to the listed birth cohorts respectively. 5 
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