1,132 research outputs found
FOPI/FOPID Tuning Rule Based on a Fractional Order Model for the Process
This paper deals with the design of a control system based on fractional order models and fractional order proportional-integral-derivative (FOPID) controllers and fractional-order proportional-integral (FOPI) controllers. The controller design takes into account the trade-off between robustness and performance as well as the trade-off between the load disturbance rejection and set-point tracking tasks. The fractional order process model is able to represent an extensive range of dynamics, including over-damped and oscillatory behaviors and this simplifies the process modelling. The tuning of the FOPID and FOPI controllers is achieved by using an optimization, as a first step, and in a second step, several fitting functions were used to capture the behavior of the optimal parameters of the controllers. In this way, a new set of tuning rules called FOMCoRoT (Fractional Order Model and Controllers Robust Tuning) is obtained for both FOPID and FOPI controllers. Simulation examples show the effectiveness of the proposed control strategy based on fractional calculus
Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles
[EN] Lignocellulosic wood flour particles with three different sizes were used to reinforce
Solanyl® type bioplastic in three compositions (10, 20, and 30 wt.%) and further processed by
melt-extrusion and injection molding to simulate industrial conditions. The wood flour particles were
morphologically and granulometric analyzed to evaluate their use as reinforcing filler. The Fuller
method on wood flour particles was successfully applied and the obtained results were subsequently
corroborated by the mechanical characterization. The rheological studies allowed observing how the
viscosity was affected by the addition of wood flour and to recover information about the processing
conditions of the biocomposites. Results suggest that all particles can be employed in extrusion
processes (shear rate less than 1000 s¿1
). However, under injection molding conditions, biocomposites
with high percentages of wood flour or excessively large particles may cause an increase in defective
injected-parts due to obstruction of the gate in the mold. From a processing point of view and based on
the biocomposites performance, the best combination resulted in Solanyl® type biopolymer reinforced
with wood flour particles loaded up to 20 wt.% of small and medium particles size. The obtained
biocomposites are of interest for injected molding parts for several industrial applications.Parres, F.; Peydro, MA.; Juárez Varón, D.; Arrieta, MP.; Aldas, M. (2020). Study of the Properties of a Biodegradable Polymer Filled with DierentWood Flour Particles. Polymers. 12(12):1-24. https://doi.org/10.3390/polym12122974124121
Optical transmitter for time-bin encoding Quantum Key Distribution
We introduce an electro-optical arrangement that is able to produce time-bin
encoded symbols with the decoy state method over a standard optical fiber in
the C-band telecom window. The device consists of a specifically designed pulse
pattern generator for pulse production, a field-programmable gate array that
controls timing and synchronization. The electrical pulse output drive a
sequence of intensity modulators acting on a continuous laser that deliver
bursts of weak optical pulse pairs of discrete intensity values. Such
transmitter allows for the generation of all the quantum states needed to
implement a discrete variable Quantum Key Distribution protocol over a
single-mode fiber channel. Symbols are structured in bursts; the minimum
relative delay between pulses is 1.25 ns, and the maximum symbol rate within a
burst is 200 MHz. We test the transmitter on simulated optical channels of 7dB
and 14dB loss, obtaining maximum extractable secure key rates of 3.0 kb/s and
0.57 kb/s respectively. Time bin state parameters such as symbol rate, pulse
separation and intensity ratio between signal and decoy states can be easily
accessed and changed, allowing the transmitter to adapt to different
experimental conditions and contributing to standardization of QKD
implementations.Comment: 8 pages, 4 figure
Linguistic evaluation of support verb constructions by OpenLogos and google translate
This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based machine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into account, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT.info:eu-repo/semantics/acceptedVersio
Experimental Determination of the Convective Coefficient of Heat Transfer Using the Global Capacitance Method
The heat transfer coefficient (h) is an extremely important variable in the evaluation of convective heat transfer, however, its determination is a great challenge due to the various factors that influence it: fluid viscosity, fluid density, specific heat of the fluid, thermal conductivity of the fluid, coefficient of volumetric expansion, fluid velocity. The objective of this work is the experimental determination of the convective heat transfer coefficient by means of the global capacitance method. Three test bodies, two cylindrical bodies and one spherical body were used. These specimens were individually heated in a stove, and heating was monitored by means of a thermocouple and a data logger. The results showed a good concordance between the values of h obtained experimentally and the literature
Influence of Silver Nitrate on Somatic Embryogenesis Induction in Arabica Coffee (Coffea arabica L.).
Plant somatic embryogenesis (SE) has been defined as the formation of embryos from a single or group of haploid or somatic cells [1, 2]. Low frequency (LFSE) and high frequency somatic embryogenesis (HFSE) have been described. In the first type, somatic embryos are induced directly from pro-embryogenic cells of explants, while in the second, they originate from embryogenic callus [1]. It has been suggested that in LFSE the origin of somatic embryos is unicellular, whereas in HFSE has been described as unicellular or multicellular [3]. SE is a powerful biotechnological tool used to propagate elite plants or to conserve important genotypes [4]. Moreover, SE offers an efficient in vitro regeneration approach as a fundamental step in plant genetic improvement for studying basic aspects of ontogenesis of somatic embryos [5]. In Coffea spp., the first studies of SE have been reported at the beginning of 1970 [6]. Since then, a large quantity of LFSE and HFSE protocols have been optimized demonstrating that coffee is not a recalcitrant species for SE [4]. In the LFSE the somatic embryos are obtained faster (approximately 70 days) using only one medium meanwhile in HFSE several media are used and somatic embryo formation takes 9-10 months [4]. Although, in LFSE small number of somatic embryos are obtained (around 10 per explant) compared to hundreds of somatic embryos obtained per gram of embryogenic calli [4], the unicellular origin of somatic embryos in LFSE represents an advantage for the chemical and physical mutagenesis, genetic transformation and genetic editing, since prevents or reduces the appearance of chimeras [7]. In C. arabica and C. canephora many factors (such as genotype, explant type, the physiological state, age and growth conditions of the donor plants, the season of collection, nutrient composition of the medium, the volume of dissolved CO2 or O2 in the culture flask, and plant growth regulators) that affect LFSE induction have been studied [3, 8, 9, 10, 11, 12, 13]. However, few studies reported the effect of silver nitrate on LFSE using leaf explants of C. arabica L. and to the best of our knowledge it has not been analyzed using Caturra and Catuaí, which are two economic important producer cultivars in Costa Rica. Since SE is genotype dependent, the culture medium need to be modified for the different genotypes [7].Therefore, the objective of this study was to determine the influence of the benzyladenine (BAP), indole-3-acetic acid (IAA), and silver nitrate (AgNO3) on low frequency somatic embryogenesis using leaf explants of Coffea arabica L. cultivars Caturra and Catuaí
The hydrogen and helium lines of the symbiotic binary Z And during its brightening at the end of 2002
High resolution observations in the region of the lines Halpha, He II 4686
and Hgamma of the spectrum of the symbiotic binary Z And were performed during
its small-amplitude brightening at the end of 2002. The profiles of the
hydrogen lines were double-peaked. These profiles give a reason to suppose that
the lines can be emitted mainly by an optically thin accretion disc. The Halpha
line is strongly contaminated by the emission of the envelope, therefore for
consideration of accretion disc properties we use the Hgamma line. The Halpha
line had broad wings which are supposed to be determined mostly from radiation
damping but high velocity stellar wind from the compact object in the system
can also contribute to their appearance. The Hgamma line had a broad emission
component which is assumed to be emitted mainly from the inner part of the
accretion disc. The line He II 4686 had a broad emission component too, but it
is supposed to appear in a region of a high velocity stellar wind. The outer
radius of the accretion disc can be calculated from the shift between the
peaks. Assuming, that the orbit inclination can ranges from 47 to
76, we estimate the outer radius as 20 - 50 R_sun. The behaviour of the
observed lines can be considered in the framework of the model proposed for
interpretation of the line spectrum during the major 2000 - 2002 brightening of
this binary.Comment: 19 pages, 5 figures. Accepted for publication in Astronomy Report
High plasma levels of soluble ST2 but not its ligand IL-33 is associated with severe forms of pediatric dengue
Q2Q1766-771Identification of early determinants of dengue disease progression, which could potentially enable individualized patient care are needed at present times. Soluble ST2 (sST2) has been recently reported to be elevated in the serum of children older than 2 years old and adults with dengue infection and it was correlated with secondary infections as well as with severe presentations of the disease. The mechanism by which secreted ST2 is linked to severe dengue and plasma leakage remains unclear. One possibility is that IL-33 ligand may be elevated, contributing to membrane bound ST2 as part of the immune activation in dengue infection. We determined plasma levels of sST2 and the ligand IL-33 in 66 children with acute secondary dengue infections clinically classified using the guidelines of the World Health Organization, 2009. Dengue infection showed significant increases in cytokines IL-12p70, IL-10, IL-8, IL-6, IL-1β and TNFα measured by flow cytometry based assay compared to uninfected individuals. In contrast, IL-33 levels remained unchanged between infected and uninfected individuals. The levels of sST2 positively correlated with values of IL-6 and IL-8 and inversely correlated with number of median value of platelet levels. In addition to circulating cytokine positive correlations we found that sST2 and isoenzyme creatine kinase-MB (CK-MB), a marker of myocardial muscle damage present in severe dengue cases were associated. Our pediatric study concluded that in dengue infections sST2 elevation does not involve concomitant changes of IL-33 ligand. We propose a study to assess its value as a predictor factor of disease severity
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability
- …