18 research outputs found

    A comparison of RNA-Seq results from paired formalin-fixed paraffin-embedded and fresh-frozen glioblastoma tissue samples.

    Get PDF
    The molecular classification of glioblastoma (GBM) based on gene expression might better explain outcome and response to treatment than clinical factors. Whole transcriptome sequencing using next-generation sequencing platforms is rapidly becoming accepted as a tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tissue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from FFPE tissues is usually degraded, which could hamper gene expression analysis. We compared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several quality-control measurements showed that RNA from FFPE samples was highly degraded but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding mutation analysis and subtype prediction were detected. Nevertheless, our results suggest that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be used in molecular studies of GBM if the RNA is sufficiently preserved

    Novel oral mTORC1/2 inhibitor TAK-228 has synergistic antitumor effects when combined with paclitaxel or PI3Kα inhibitor TAK-117 in preclinical bladder cancer models

    No full text
    Advanced bladder cancer is associated with a poor prognosis and limited treatment options. The PI3K/AKT/mTOR pathway is frequently activated in this disease and can be a potential therapeutic target for treatment intervention. We studied the antitumor efficacy of a new targeted therapy, TAK-228 (oral mTORC1/2 inhibitor), in preclinical models of bladder cancer. We evaluated the effects of TAK-228 in combination with a PI3Kα inhibitor (TAK-117) or with chemotherapy (paclitaxel). We used six bladder cancer cell lines and in vivo xenografts models. TAK-228 strongly inhibited cell proliferation in vitro, and reduced tumor growth and angiogenesis in vivo. Three possible biomarkers of response to TAK-228 (basal levels of 4E-BP1, p-4E-BP1/4E-BP1 ratio, or eIF4E/4E-BP1 ratio) were identified. The combination of TAK-228 and TAK-117 had synergistic effects in vitro and in vivo. Furthermore, TAK-228 demonstrated greater efficiency when combined with paclitaxel. TAK-228 also showed ex vivo activity in tumor tissue from patients with treatment-naïve bladder cancer. TAK-228 is a promising investigational agent that induces a strong effect on cell proliferation, tumor growth, and angiogenesis in bladder cancer models. High synergistic effects were observed with TAK-228 combined with a PI3K inhibitor or with chemotherapy. These results are currently being investigated in a clinic trial of TAK-228 plus paclitaxel in patients with metastatic bladder cancer (NCT03745911). IMPLICATIONS: Strong synergistic effects were observed when combining TAK-228 with TAK-117 (a PI3Kα inhibitor) or with paclitaxel chemotherapy. A phase II study at our institution is currently evaluating the efficacy of TAK-228 combined with paclitaxel in patients with metastatic bladder cancer

    A comparison of RNA-Seq results from paired formalin-fixed paraffin-embedded and fresh-frozen glioblastoma tissue samples.

    No full text
    The molecular classification of glioblastoma (GBM) based on gene expression might better explain outcome and response to treatment than clinical factors. Whole transcriptome sequencing using next-generation sequencing platforms is rapidly becoming accepted as a tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tissue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from FFPE tissues is usually degraded, which could hamper gene expression analysis. We compared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several quality-control measurements showed that RNA from FFPE samples was highly degraded but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding mutation analysis and subtype prediction were detected. Nevertheless, our results suggest that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be used in molecular studies of GBM if the RNA is sufficiently preserved

    A Comparison of RNA-Seq Results from Paired Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Glioblastoma Tissue Samples

    No full text
    Altres ajuts: Fundació La Marató TV3, Project: 665/C/2013The molecular classification of glioblastoma (GBM) based on gene expression might better explain outcome and response to treatment than clinical factors. Whole transcriptome sequencing using next-generation sequencing platforms is rapidly becoming accepted as a tool for measuring gene expression for both research and clinical use. Fresh frozen (FF) tissue specimens of GBM are difficult to obtain since tumor tissue obtained at surgery is often scarce and necrotic and diagnosis is prioritized over freezing. After diagnosis, leftover tissue is usually stored as formalin-fixed paraffin-embedded (FFPE) tissue. However, RNA from FFPE tissues is usually degraded, which could hamper gene expression analysis. We compared RNA-Seq data obtained from matched pairs of FF and FFPE GBM specimens. Only three FFPE out of eleven FFPE-FF matched samples yielded informative results. Several quality-control measurements showed that RNA from FFPE samples was highly degraded but maintained transcriptomic similarities to RNA from FF samples. Certain issues regarding mutation analysis and subtype prediction were detected. Nevertheless, our results suggest that RNA-Seq of FFPE GBM specimens provides reliable gene expression data that can be used in molecular studies of GBM if the RNA is sufficiently preserved

    Degradation quality metrics.

    No full text
    <p>(A) Gene coverage heatmap. More degraded regions are depicted blue. All samples were affected at the 5’ end of the gene body but this effect was more prominent for FFPE samples. The most degraded FFPE sample (AA6365) also showed degradation at the 3’ end and across the gene body. (B) Line graphs (FF, blue; FFPE, red) showing the mean per-base coverage of RNA transcripts for all paired samples. Strong coverage unevenness was observed for the most degraded sample (FFPE_AA6365).</p
    corecore