18 research outputs found

    TNFα priming through its interaction with TNFR2 enhances endothelial progenitor cell immunosuppressive effect: new hope for their widespread clinical application

    No full text
    International audienceAbstract Background Bone marrow derived endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) involved in neo-angiogenesis and endothelial homeostasis and are considered as a circulating reservoir for endothelial repair. Many studies showed that EPCs from patients with cardiovascular pathologies are impaired and insufficient; hence, allogenic sources of EPCs from adult or cord blood are considered as good choices for cell therapy applications. However, allogenic condition increases the chance of immune rejection, especially by T cells, before exerting the desired regenerative functions. TNFα is one of the main mediators of EPC activation that recognizes two distinct receptors, TNFR1 and TNFR2. We have recently reported that human EPCs are immunosuppressive and this effect was TNFα-TNFR2 dependent. Here, we aimed to investigate if an adequate TNFα pre-conditioning could increase TNFR2 expression and prime EPCs towards more immunoregulatory functions. Methods EPCs were pre-treated with several doses of TNFα to find the proper dose to up-regulate TNFR2 while keeping the TNFR1 expression stable. Then, co-cultures of human EPCs and human T cells were performed to assess whether TNFα priming would increase EPC immunosuppressive and immunomodulatory effect. Results Treating EPCs with 1 ng/ml TNFα significantly up-regulated TNFR2 expression without unrestrained increase of TNFR1 and other endothelial injury markers. Moreover, TNFα priming through its interaction with TNFR2 remarkably enhanced EPC immunosuppressive and anti-inflammatory effects. Conversely, blocking TNFR2 using anti-TNFR2 mAb followed by 1 ng/ml of TNFα treatment led to the TNFα-TNFR1 interaction and polarized EPCs towards pro-inflammatory and immunogenic functions. Conclusions We report for the first time the crucial impact of inflammation notably the TNFα-TNFR signaling pathway on EPC immunological function. Our work unveils the pro-inflammatory role of the TNFα-TNFR1 axis and, inversely the anti-inflammatory implication of the TNFα-TNFR2 axis in EPC immunoregulatory functions. Priming EPCs with 1 ng/ml of TNFα prior to their administration could boost them toward a more immunosuppressive phenotype. This could potentially lead to EPCs’ longer presence in vivo after their allogenic administration resulting in their better contribution to angiogenesis and vascular regeneration

    GDF15 secreted by senescent endothelial cells improves vascular progenitor cell functions

    No full text
    International audienceEndothelial dysfunction (ED) is part of the first steps in the development of cardiovascular diseases (CVD). Growth Differentiation Factor 15 (GDF15) is a cytokine belonging to the Transforming Growth Factor β superfamily and its expression is increased both during ED and in CVD. Because high blood levels of GDF15 have been reported during ED, we hypothesized that GDF15 could be produced by endothelial cells in response to a vascular stress, possibly to attenuate endothelial function loss. Since senescence is mainly involved in both vascular stress and endothelial function loss, we used Endothelial Colony Forming Cells generated from adult blood (AB-ECFCs) as a model of endothelial cells to investigate GDF15 expression during cellular senescence. Then, we analyzed the potential role of GDF15 in AB-ECFC functions and senescence. When AB-ECFCs become senescent, they secrete increased levels of GDF15. We investigated GDF15 paracrine effects on non-senescent AB-ECFCs and showed that GDF15 enhanced proliferation, migration, NO production and activated several signaling pathways including AKT, ERK1/2 and SMAD2 without triggering any oxidative stress. Taken together, our results suggest that GDF15 production by senescent AB-ECFCs could act in a paracrine manner on non-senescent AB-ECFCs, and that this interaction could be beneficial to its model cells. Therefore, GDF15 could play a beneficial role in a dysfunctional vascular system as previously reported in patients with CVD, by limiting ED related to vascular stress occurring in these diseases

    The BOC ELISA, a ruminant-specific AMH immunoassay, improves the determination of plasma AMH concentration and its correlation with embryo production in cattle

    No full text
    International audiencePlasma anti-Müllerian hormone (AMH) concentrations have been recently found to be predictive of the number of embryos recovered after FSH superovulatory treatment in the cow. However, the sensitivity of the Active Müllerian-inhibiting substance/AMH ELISA (ref. 10–14400; DSL-Beckman-Coulter) used to make these measurements in bovine plasma samples is low because it was developed to measure human AMH levels. To overcome this limitation, we developed an immunoassay specific for the bovine (B), ovine (O), and caprine (C) species, the bovine-ovine-caprine (BOC) ELISA. For this purpose, we produced recombinant bovine AMH for standardization, and we used monoclonal antibodies raised against bovine AMH, previously prepared by our laboratory. We evaluated the precision, accuracy, specificity, limit of detection, and functional sensitivity of the assay. The intra-assay coefficient of variation ranged between 3.4% and 11.3% for AMH concentrations between 23.68 and 1.74 ng/mL, and the interassay coefficient of variation ranged between 4.8% and 20.5% for concentrations between 25.53 and 1.42 ng/mL, respectively. The assay displayed a good linearity, had a detection limit of 0.4 ng/mL and a functional sensitivity of 1.4 ng/mL. It also cross-reacted with ovine and caprine AMHs. Both the mean and median AMH levels measured in 40 cow plasma samples using the BOC ELISA were approximately 44 fold higher than the mean and median AMH levels measured with the Active Müllerian-inhibiting substance/AMH ELISA. Moreover, a higher correlation was observed between the average number of embryos recovered from each cow after superovulatory treatment and AMH concentrations measured with the BOC ELISA. This BOC ELISA provides a very efficient tool for evaluating the ovarian follicular reserve of cows and predicting their embryo production capacity

    SOX9 and SF1 are involved in cyclic AMP-mediated upregulationof anti-Müllerian gene expression in the testicular prepubertal Sertoli cell line SMAT1

    Get PDF
    In Sertoli cells, anti-Müllerian hormone (AMH) expression is upregulated by FSH via cyclic AMP (cAMP), although no classical cAMP response elements exist in the AMH promoter. The response to cAMP involves NF-κB and AP2; however, targeted mutagenesis of their binding sites in the AMH promoter do not completely abolish the response. In this work we assessed whether SOX9, SF1, GATA4, and AP1 might represent alternative pathways involved in cAMP-mediated AMH upregulation, using real-time RTPCR (qPCR), targeted mutagenesis, luciferase assays, and immunocytochemistry in the Sertoli cell line SMAT1. We also explored the signaling cascades potentially involved. In qPCR experiments, Amh, Sox9, Sf1, and Gata4 mRNA levels increased after SMAT1 cells were incubated with cAMP. Blocking PKA abolished the effect of cAMP on Sox9, Sf1, and Gata4 expression, inhibiting PI3K/PKB impaired the effect on Sf1 and Gata4, and reducing MEK1/2 and p38 MAPK activities curtailed Gata4 increase. SOX9 and SF1 translocated to the nucleus after incubation with cAMP. Mutations of the SOX9 or SF1 sites, but not of GAT4 or AP1 sites, precluded the response of a 3,063-bp AMH promoter to cAMP. In conclusion, in the Sertoli cell line SMAT1 cAMP upregulates SOX9, SF1, and GATA4 expression and induces SOX9 and SF1 nuclear translocation mainly through PKA, although other kinases may also participate. SOX9 and SF1 binding to the AMH promoter is essential to increase the activity of the AMH promoter in response to cAMP.Fil: Lasala, Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Schteingart, Helena Fedora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Arouche, Nassim. Université Paris Sud; FranciaFil: Bedecarras, Patricia Gladys. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Grinspon, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; ArgentinaFil: Picard, Jean-Yves. Université Paris Sud; FranciaFil: Josso, Nathalie. Université Paris Sud; FranciaFil: Clemente, Nathalie Di. Université Paris Sud; FranciaFil: Rey, Rodolfo Alberto. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones Endocrinológicas "Dr. César Bergada". Fundación de Endocrinología Infantil. Centro de Investigaciones Endocrinológicas "Dr. César Bergada"; Argentin

    Autologous endothelial progenitor cell therapy improves right ventricular function in a model of chronic thromboembolic pulmonary hypertension.

    No full text
    International audienceBACKGROUND:Right ventricular (RV) failure is the main prognostic factor in pulmonary hypertension, and ventricular capillary density (CD) has been reported to be a marker of RV maladaptive remodeling and failure. Our aim was to determine whether right intracoronary endothelial progenitor cell (EPC) infusion can improve RV function and CD in a piglet model of chronic thromboembolic pulmonary hypertension (CTEPH).METHODS:We compared 3 groups: sham (n = 5), CTEPH (n = 6), and CTEPH with EPC infusion (CTEPH+EPC; n = 5). After EPC isolation from CTEPH+EPC piglet peripheral blood samples at 3 weeks, the CTEPH and sham groups underwent right intracoronary infusion of saline, and the CTEPH+EPC group received EPCs at 6 weeks. RV function, pulmonary hemodynamics, and myocardial morphometry were investigated in the animals at 10 weeks.RESULTS:After EPC administration, the RV fractional area change increased from 32.75% (interquartile range [IQR], 29.5%-36.5%) to 39% (IQR, 37.25%-46.50%; P = .030). The CTEPH+EPC piglets had reduced cardiomyocyte surface areas (from 298.3 μm2 [IQR, 277.4-335.3 μm2] to 234.6 μm2 (IQR, 211.1-264.7 μm2; P = .017), and increased CD31 expression (from 3.12 [IQR, 1.27-5.09] to 7.14 [IQR, 5.56-8.41; P = .017). EPCs were found in the RV free wall at 4 and 24 hours after injection but not 4 weeks later.CONCLUSIONS:Intracoronary infusion of EPC improved RV function and CD in a piglet model of CTEPH. This novel cell-based therapy might represent a promising RV-targeted treatment in patients with pulmonary hypertension

    FSH and Its Second Messenger cAMP Stimulate the Transcription of Human Anti-Müllerian Hormone in Cultured Granulosa Cells

    No full text
    International audienceAnti-Müllerian hormone (AMH), also called Müllerian-inhibiting substance, a member of the TGF-ß family, is responsible for the regression of Müllerian ducts in the male fetus. In females, AMH is synthesized by granulosa cells of preantral and small antral follicles, and production wanes at later stages of follicle maturation. Using RT-PCR in luteal granulosa cells in primary culture and reporter gene techniques in the KK1 granulosa cell line, we show that FSH and cAMP enhance AMH transcription, and LH has an additive effect. Gonadotropins and cAMP act through protein kinase A and p38 MAPK signaling pathways and involve the GATA binding factor-4 and steroidogenic factor-1 transcription factors, among others. The expression profile of AMH and the dynamics of serum AMH after gonadotropin stimulation have been interpreted as a down-regulating effect of FSH upon AMH production by granulosa cells. The specific effect of gonadotropins upon granulosa cells may be obscured in vivo by the effect of FSH upon follicular maturation and by the presence of other hormones and growth factors, acting individually or in concert
    corecore