3 research outputs found

    Stratigraphic Architecture and Sediment Facies of the Western Oak Ridges Moraine, Humber River Watershed, Southern Ontario

    Get PDF
    The Oak Ridges Moraine in southern Ontario is a ca. 160 km long east-west trending ridge of sand and gravel situated north of Lake Ontario. Study of the Oak Ridges Moraine in the Humber River watershed was undertaken to assess its role in the groundwater system of the buried Laurentian Valley. The Oak Ridges Moraine is interpreted to have been deposited in three stages. Stage I records rapid deposition from hyperconcentrated flows where tunnel channels discharged into a subglacial lake in the Lake Ontario basin. Low-energy basin sedimentation of Stage II was in a subglacial and ice-contact setting of a highly crevassed ice sheet. Stage III sedimentation is characterized by rapid facies changes associated with esker, subaqueous fan, and basinal sedimentation. Detailed sediment analysis challenges the concept that the Oak Ridges Moraine was deposited principally from seasonal meltwater discharges, climatic modulated ice-marginal fluctuations, or in an interlobate position. Instead it is interpreted to have formed in response to late-glacial ice sheet events associated with subglacial meltwater ponding, episodic and catastrophic subglacial meltwater discharge, and subsequent seasonal meltwater discharge. The moraine probably formed as the glacial-hydraulic system re-equilibrated to the presence of a thinned, grounded ice shelf and a subglacial lake in the Lake Ontario basin.La moraine de Oak Ridges, sud de l’Ontario, est une crête de sable et de gravier orientée est-ouest d’une longueur de 160 km au nord du lac Ontario. L’étude de la moraine de Oak Ridges dans le bassin de la rivière Humber permet de comprendre son rôle dans le système de drainage de la vallée Laurentienne. La moraine de Oak Ridges a été édifiée en trois phases. La phase I consiste en une sédimentation rapide par hyperconcentration des écoulements, où les chenaux en tunnel se déversent dans un lac sous-glaciaire du lac Ontario. Le bassin de sédimentation de faible énergie de la phase II est sous-glaciaire et touche à un inlandsis ayant d’importantes crevasses. La phase III se caractérise par un changement de faciès très rapide, par la présence d’eskers, de cônes aquatiques et de bassins sédimentaires. Les analyses sédimentaires détaillées ébranlent l’hypothèse que la moraine de Oak Ridges ait été formée par la fonte des glaces saisonnière, les fluctuations climatiques près des marges glaciaires, ou dans une position interlobaire. Notre interprétation indique plutôt qu’elle a été mise en place en réponse à des événements de fonte sous-glaciaire de nature épisodique et catastrophique, et par des apports subséquents d’eau de fonte saisonnière. La moraine s’est probablement formée lors de la ré-équilibration du système glacio-hydraulique en présence d’un inlandsis mince, en contact avec le substrat et alimentant un lac sous-glaciaire dans le bassin du lac Ontario

    Key future directions for research on turbidity currents and their deposits

    Get PDF
    Turbidity currents, and other types of submarine sediment density flow, redistribute more sediment across the surface of the Earth than any other sediment flow process, yet their sediment concentration has never been measured directly in the deep ocean. The deposits of these flows are of societal importance as imperfect records of past earthquakes and tsunamogenic landslides and as the reservoir rocks for many deep-water petroleum accumulations. Key future research directions on these flows and their deposits were identified at an informal workshop in September 2013. This contribution summarizes conclusions from that workshop, and engages the wider community in this debate. International efforts are needed for an initiative to monitor and understand a series of test sites where flows occur frequently, which needs coordination to optimize sharing of equipment and interpretation of data. Direct monitoring observations should be combined with cores and seismic data to link flow and deposit character, whilst experimental and numerical models play a key role in understanding field observations. Such an initiative may be timely and feasible, due to recent technological advances in monitoring sensors, moorings, and autonomous data recovery. This is illustrated here by recently collected data from the Squamish River delta, Monterey Canyon, Congo Canyon, and offshore SE Taiwan. A series of other key topics are then highlighted. Theoretical considerations suggest that supercritical flows may often occur on gradients of greater than ??0.6°. Trains of up-slope-migrating bedforms have recently been mapped in a wide range of marine and freshwater settings. They may result from repeated hydraulic jumps in supercritical flows, and dense (greater than approximately 10% volume) near-bed layers may need to be invoked to explain transport of heavy (25 to 1,000 kg) blocks. Future work needs to understand how sediment is transported in these bedforms, the internal structure and preservation potential of their deposits, and their use in facies prediction. Turbulence damping may be widespread and commonplace in submarine sediment density flows, particularly as flows decelerate, because it can occur at low (<?0.1%) volume concentrations. This could have important implications for flow evolution and deposit geometries. Better quantitative constraints are needed on what controls flow capacity and competence, together with improved constraints on bed erosion and sediment resuspension. Recent advances in understanding dilute or mainly saline flows in submarine channels should be extended to explore how flow behavior changes as sediment concentrations increase. The petroleum industry requires predictive models of longer-term channel system behavior and resulting deposit architecture, and for these purposes it is important to distinguish between geomorphic and stratigraphic surfaces in seismic datasets. Validation of models, including against full-scale field data, requires clever experimental design of physical models and targeted field programs
    corecore