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Abstract  

Turbidity currents, and other types of submarine sediment density flow 11, redistribute more sediment across 

the surface of the Earth than any other sediment flow process, yet their sediment concentration has never 

been measured directly in the deep ocean. The deposits of these flows are of societal importance as imperfect 

records of past earthquakes and tsunamogenic landslides and as the reservoir rocks for many deep water 

petroleum accumulations. Key future research directions on these flows and their deposits were identified at 

an informal workshop in September 2013. This contribution summarizes conclusions from that workshop, and 

engages the wider community in this debate. International efforts are needed for an initiative to monitor and 

understand a series of test sites where flows occur frequently, which needs coordination to optimise sharing 

of equipment and interpretation of data. Direct monitoring observations should be combined with cores and 

seismic data to link flow and deposit character, whilst experimental and numerical models play a key role in 

understanding field observations. Such an initiative may be timely and feasible, due to recent technological 

advances in monitoring sensors, moorings and autonomous data recovery. This is illustrated here by recently 

collected data from the Squamish River delta, Monterey Canyon, Congo Canyon and offshore SE Taiwan. 

Theoretical considerations suggest that supercritical flows may often occur on gradients of > ~0.6°. Trains of 

up-slope migrating bedforms have recently been mapped in a wide range of marine and freshwater settings. 

They may result from repeated hydraulic jumps in supercritical flows, although dense (greater than 

approximately 10% volume) near bed layers may need to be invoked to explain transport of heavy (25 to 

1,000kg) blocks. Future work needs to understand how sediment is transported in these bedforms, the 

internal structure and preservation potential of their deposits, and their use in facies prediction. Turbulence 

damping may be widespread and commonplace in submarine sediment density flows, particularly as flows 

decelerate, because it can occur at low (< 0.1 %) volume concentrations. This could have important 

implications for flow evolution and deposit geometries. Better quantitative constraints are needed on what 

controls flow capacity and competence, together with improved constraints on bed erosion and sediment 

resuspension. Recent advances in understanding dilute or mainly saline flows within submarine channels 

should be extended to explore how flow behaviour changes as sediment concentrations increase. The 

petroleum industry requires predictive models of longer term channel system behaviour and resulting deposit 

architecture, and for these purposes it is important to distinguish between geomorphic and stratigraphic 

                                                           
1 See Talling et al., 2012 for a detailed discussion of terminology. In this contribution, ‘turbidity current’ is used to denote 
any type of subaqueous sediment density flow.   



surfaces within seismic datasets. Validation of models, including against full-scale field data, requires clever 

experimental design of physical models and targeted field programs.  

 

Introduction  

Turbidity currents, and other types of submarine sediment density flow 1 (Lowe, 1982; Talling et al., 2012), are 

the volumetrically most important sediment transport process on our planet, and they form the largest 

sediment accumulations on Earth (submarine fans). A single turbidity current can transport over ten times the 

annual sediment flux from all of the world’s rivers, and can be more than 200 km wide (see Table 1 of Talling, 

2014). They can reach speeds of ~20 m/s (~70 km/h) on seafloor gradients of just 0.3° (Piper et al., 1999). 

Other types of particle-laden flow (such as pyroclastic flows and snow avalanches) can reach such speeds, but 

do so on much steeper gradients. Turbidity currents break important networks of seafloor cables that now 

carry > 95% of trans-oceanic data traffic (Carter et al., 2009), including the internet and financial markets that 

underpin daily lives. Ancient submarine flows have formed major subsurface oil and gas reservoirs in locations 

worldwide with considerable economic and strategic importance.  

 

It is over 60 years since the seminal publication of Kuenen and Migliorini (1950) in which they made the link 

between sequences of graded bedding and turbidity currents. The deposits of turbidity currents have now 

been described in numerous locations worldwide, and this might lead to the view that these flows are well 

understood. However, it is sobering to note how few direct measurements we have from these submarine 

flows in action. Sediment concentration is the critical parameter controlling such flows, yet it has never been 

measured directly for flows that reach and build submarine fans. Indeed, studies in only six locations (Xu, 

2010, 2011, 2013, 2014; Hughes Clarke et al., 2012, 2013; Cooper et al., 2012; Khripounoff et al., 2012; Lintern 

and Hill, pers. comm. ; see Talling et al., 2013) have estimated sediment concentrations for turbidity currents 

in shallow water using backscatter values from acoustic Doppler current profilers (ADCPs). This indirect 

technique for measuring sediment concentration (backscatter is also affected strongly by additional 

parameters including grain size) has large uncertainties and cannot penetrate into high sediment 

concentrations at the base of the flow. How then do we know what type of flow to model in flume tanks, or 

which assumptions to use to formulate numerical simulations or analytical models?  

 

An informal workshop was held from 9-13th September at Santa Sofia in the Italian Apennines that combined 

field examination of classic turbidites and talks from 32 delegates. An overall aim of the workshop was to 

identify key future research directions for work on turbidity currents and their deposits. How do we make 

major step changes in understanding in the future? The workshop also highlighted important recent advances 

in understanding and promoted comparisons between field datasets and numerical or physical modelling. This 

article tries to engage the wider audience in this debate on what are key future directions for research on 

these fascinating (and on occasions frustrating) flows.  

 

  



Suggestions for key future research directions  

 

The following suggestions from the workshop are not an exhaustive list. Indeed, such suggestions are 

inevitably contentious and subjective. In many cases, these future research directions lead on from recent 

advances in understanding or technology, which are also outlined briefly.  

 

(A) Co-ordinated community efforts for source-to-sink data for submarine systems at key ‘test sites’  

Recent advances: There have been major recent advances in direct monitoring of flows in shallow (< 50-250m) 

water locations worldwide. For instance, a remarkable data set is now available from direct monitoring of 

flows on the Squamish River delta in Howe Sound, British Columbia (Fig. 1; Hughes Clarke et al., 2012, 2013). 

This work used more than 90 repeat multibeam bathymetric surveys (Fig. 1c,d) to understand flow timing, 

triggers and character, combined with water column measurements from acoustic sensors mounted on 

bottom tripods (Fig. 1b,e), and most recently with innovative moorings that suspend instruments above active 

channels. Time-lapse animations are available of daily changes in seafloor morphology through the river flood 

season (Fig. 1d; Hughes Clarke et al., 2012), together with hourly changes during a single low tide (Hughes 

Clarke et al., 2013). These flows were capable of moving 25-45kg blocks for tens to hundreds of meters 

(Hughes Clarke et al., 2013). Core and shallow seismic data is available to better constrain deposits (Fig. 1a). 

Complementary work on the nearby Fraser River delta (Hill, 2012) includes the VENUS cabled observatory on 

the delta slope (Ayranci et al., 2012). Long term monitoring of flows in Monterey Canyon, offshore California, 

provided the first detailed profiles of flow velocity and sediment concentration (Fig. 2; Xu et al., 2004; 2011; 

Xu, 2010, 2011, 2013, 2014). This is part of collaborative work Paull and others at the Monterey Bay Aquarium 

Research Institute (MBARI), who are developing new sensors embedded in moving near-bed layers that 

record their acceleration and sense of rotation, and techniques for recovering data from such sensors through 

gliders. New insights have also been gained from studies of saline density flows in the Black Sea (Flood et al., 

2009; Parsons et al., 2011; Hiscott et al., 2013; Sumner et al., 2013b, 2014). Together with work in other 

locations (e.g. Paull et al., 2010a, 2012; Maier et al. 2012), this highlight the potential of autonomous 

underwater vehicles (AUVs) for flow monitoring and mapping. Cumulatively, these recent and ongoing studies 

are showing how innovative techniques and technology can be used successfully for the next generation of 

flow monitoring.  

 

Future Coordinated Studies at Test Sites: There is a compelling need to monitor flows directly if we are to 

make step changes in understanding. The challenges of selecting locations where turbidity currents are 

frequent and designing instruments that can make the necessary measurements are well known (Inman et al., 

1978; Talling et al., 2013). The flows evolve significantly, such that source to sink data are needed. We need to 

monitor flows in different settings with variable triggering factors and flow path morphologies because their 

character can vary significantly (Piper and Normark, 2009; Talling, 2014). It was suggested that coordinated 

international efforts should be made to monitor active sediment-laden flows at a set of key ‘test sites’ (Table 

1), such that the sum of these efforts is greater than the parts. Such work needs to integrate numerical and 



physical modelling with the collection of field observations, in order to understand the significance of field 

observations. As stressed at the workshop, such an international initiative also needs to include coring of 

deposits to link flow processes to deposit character (Table 1), because in most global locations flow behaviour 

must be inferred from deposits alone. Collection of seismic reflection datasets is also crucial for 

understanding the larger-scale evolution and resulting stratigraphic architecture of these systems (Table 1), 

and to link with studies of subsurface reservoirs. Major recent advances have been made in understanding 

sediment dispersal on the shelf and dense water cascading, through large-scale initiatives such as 

STRATAFORM, EU-STRATAFORM and MARGINS.  

 

The following test sites were proposed as examples of the main types of turbidity current system including 

systems fed by rivers or by waves, tides or geostrophic currents, marine and freshwater systems, where 

plunging hyperpycnal river floods are common or absent, and systems that produce powerful flows that reach 

the deep ocean. Test sites are chosen where flows are known to be active – occurring on annual or shorter 

time scale, where previous work provides a basis for future projects, and there is access to suitable vessels 

and other infrastructure. A few additional test sites could be added to this list, carefully chosen to capture 

other types of flow triggering and dynamics.  

 

(1) Squamish River, Fraser River, Kitimat, Bute and Knight Inlets. These locations along the Pacific coast of 

Canada represent river-fed submarine systems (Fig. 1) that normally lack hyperpycnal river discharge (Prior et 

al., 1987; Hill, 2012; Hughes Clarke et al., 2012 & 2013). Comparison between these systems suggests a 

continuum of progressively better developed submarine channels (Conway et al., 2012), so that work at these 

locations can address questions about flow dynamics in sinuous channels (research direction D below), as well 

as work on societal risk due to tsunami hazards from delta-front collapse.  

 

(2) Lake Geneva in Switzerland and France was where turbidity currents were first noted by Forel (1885) and 

have cut well developed channel systems (Hsü and Kelts, 1985; Lambert and Giovanoli, 1988; Girardclos et al., 

2012). The Rhône delta represents a river-fed system where hyperpycnal river outflows often plunge and 

allows comparisons to be made between marine and freshwater systems.  

 

(3) Monterey Canyon–Fan offshore California provides an example of a canyon in which present-day flows are 

driven mainly by wave action rather than by river outflow (Fig. 2). It is already the location of detailed and 

technologically sophisticated monitoring efforts (Paull et al., 2010a), including the first velocity and density 

profiles through active flows (Fig. 2; Xu et al., 2004, 2013; Xu, 2010; 2013, 2014). A major MBARI, US 

Geological Survey, and UK Natural Environment Research Council monitoring experiment is already funded 

from 2014-17, which includes deployment of a seafloor observatory, event detectors along the flow path of 

the sandy floor of the canyon, and four sets of ADCP moorings at water depths of 300 m to 1850 m. An 

extensive set of cores (including vibracores taken with a Remotely Operated Vehicle (ROV); Fig. 2c) have been 



described (Paull et al., 2005, 2010a). MBARI is also currently field testing innovative sensors embedded within 

flowing sediment, and wave-powered gliders as mobile communications hubs for data recovery.  

 

(4) Gaoping Canyon, Taiwan represents a river-fed system with hyperpycnal discharge (Liu et al., 2013). It is 

one of the relatively few locations where the canyon head is adjacent to the river mouth, and where long 

runout flows commonly reach the Manila Trench (Fig. 3c,d; Hsu et al., 2008; Carter et al., 2012).  

 

(5) Congo Canyon, offshore West Africa is an example of a large-scale (0.3 x 106 km2) submarine fan system 

on a passive margin. The distal parts of such fans can form thick sequences on the modern seafloor and in the 

ancient rock record. Flows occur frequently in the Congo Canyon, as shown by recent ADCP monitoring (Fig. 

3a,b; Cooper et al., 2012) as well as older cable breaks (Heezen et al., 1964).  

 

(6) Other canyon-fan systems. The Santa Monica Basin and Southern California Borderland canyon-fan 

systems also offer excellent opportunities for extending existing relatively detailed field datasets that include 

IODP cores (Romans et al., 2009; Normark et al., 2009). The Var Canyon-fan system in the Mediterranean may 

also provide a suitable location to extend previous unusually detailed monitoring work (Khripounoff et al., 

2012) and detailed studies of sediment deposits (Mas et al. 2010).  

 

Understanding infrequent, long run-out flows: Ongoing monitoring efforts are concentrated in shallow water 

settings, and are biased towards frequent (sub-annual) events (Fig. 4; Talling et al., 2013). However, it is the 

longer run-out flows which reach submarine fans that form much of the rock record, and their character may 

differ significantly from shorter and more frequent events. Workshop participants emphasised the need to 

include study of these longer run-out flows at the test sites. Due to their infrequent occurrence in most 

locations (every few hundred to thousand years) we can only study their deposits in these systems (Fig. 4). 

However, long run-out flows are more frequent in a few modern systems, typically where canyon heads are 

still connected to major river mouths (Fig. 3). A view was expressed that we must eventually aim to monitor 

long run-out flows in locations such as the Congo Canyon and offshore Taiwan where they are relatively 

frequent (Fig. 3). Cable breaks show that four flows in 6 years have reached the deep ocean through the 

Gaoping Canyon offshore Taiwan (Hsu et al., 2008; Carter et al., 2012) and 11 events occurred in 8 months at 

a water depth of ~1900m in the Congo Canyon (Cooper et al., 2012). However, the technology and 

operational insights needed to do this will be best developed initially in shallower water settings. This may 

include revisiting deposits of flows and slides that occurred off the Grand Banks event in 1929, and Nice in 

1979.  

 

Monitoring using existing seafloor infrastructure: The offshore geohazards sector needs to understand the 

potential impacts on seafloor structures of higher sediment concentration (> ~10% volume) layers at the base 

of flows. Suitable information on such layers is not currently available, potentially leading to over-

conservative design criteria and extra costs. Addition of flow monitoring instruments to deep water oil and 



gas field developments (such as through sensors attached to manifolds, pipelines, flowlines, or risers) could 

provide long-term (lifetime of field) monitoring datasets. Such initiatives would involve relatively low cost, 

and would inform future phases of field development and geohazard assessment. Oceanographic water-

column information and structural pile settlement measurements are already often recorded in such a 

manner. Future opportunities to add scientific instruments to repeater nodes in submarine elecommunication 

cable networks should also be explored.  

 

(B) Supercritical flow dynamics and deposits  

Recent advances: Supercritical flow occurs when the Froude number is greater than ~1, such that the flow is 

relatively thin and fast. Unlike rivers, turbidity currents are likely to be supercritical on slopes steeper than 

approximately 0.6° (Komar, 1971; Hand, 1974; Sequeiros, 2012), which is consistent with available field 

observations (Xu, 2011; Talling, 2013). The dynamics of supercritical flows is an active field of research, and 

laboratory experiments reveal that velocity profiles are substantially different from subcritical flow 

(Sequeiros, 2012; Xu, 2011). Recent flume and numerical models indicate that supercritical flows can produce 

upstream-migrating asymmetric bedforms with a wide range of scales (Fig. 5; Kostic and Parker, 2006; 

Spinewine et al., 2009; Cartigny et al. 2011; Kostic, 2011). They provide a potential explanation for bedforms 

seen in fjord-head deltas (Figs. 1 and 5d; Hughes Clarke et al., 2012, 2013), canyon floors (Figs. 2c and 5c; 

Migeon et al., 2001; Paull et al., 2010a; Covault et al., 2013) and on levees of deep water channel systems (Fig. 

5b; Normark et al., 2002; Fildani et al., 2006; Armitage et al. 2012).  

 

Dunes-scale cross bedding is rarely observed in many turbidite sequences (Arnott, 2013). However, features 

including top-cut-out Bouma sequences, backset bedding, facies associated with shallow scours, and rapid 

pinch-out of beds could be formed by cyclic steps, one of the most stable of supercritical flow bedforms 

(Postma et al., 2009; Cartigny et al. 2013a; Kostic, 2011). Other bedforms in the supercritical regime include a 

variety of antidunes and chute & pools (Fig. 6; Middleton, 1965; Hand, 1974; Cartigny et al., 2013a). This topic 

generated significant debate at the workshop, with disparate views on the abundance of supercritical 

bedforms in turbidites. It is now timely to go back to outcrops to better understand what features are (or are 

not) formed by supercritical flows (Postma et al., in review), guided by analysis of deposits from directly 

monitored supercritical flows (c.f. Hughes Clarke et al., 2012, 2013).  

 

Up-slope migrating crescent shaped bedforms with wavelengths of tens of metres are common in canyon and 

channel heads in both marine and freshwater locations worldwide (Figs 1, 2 and 5; Paull et al., 2010a, 2013; 

Kostic, 2011; Girardclos et al., 2012; Hill, 2012; Covault et al., 2013; Hughes Clarke et al., 2012, 2013). Such 

crescentic bedforms can indeed be associated with supercritical flows, as illustrated by the most recent 

observations presented at the workshop by Hughes Clarke from the Squamish delta. However, it is not yet 

clear whether such supercritical flows are exclusively dilute suspensions, or whether other processes may be 

involved. ROV observations of liquefying canyon floors (see video in supplementary material of Paull et al., 

2013), master headscarps (large scarps that occur at the up-slope termination of some trains of bedforms; see 



Paull et al., 2012 their figure 5a), and movement of very heavy (25-1000 kg) blocks by the flows (Fig. 2c; Paull 

et al., 2010a, 2013; Hughes Clarke et al., 2013), suggest that dense, near-bed layers at the base of flows 

generated by breaching (Talling et al., 2013; their fig. 8), or liquefied slumps (Paull et al., 2010a; their figure 

12), may also be involved in bedform generation. It is important to determine whether such heavy blocks (Fig. 

2c), which are initially buried within the bed, could be transported by dilute flows travelling at speeds of up to 

1-to-2.5 m/s observed in these locations (Fig. 2b; Xu et al., 2004; Xu, 2011; Hughes Clarke et al., 2012, 2013).  

 

Future research on supercritical flows will need to address at least the following questions. Are crescentic 

bedforms typically associated with cyclic hydraulic jumps, and if so, which is the cause and which is the effect? 

The field of morphodynamics is exploring how flow structure and bed morphology may co-evolve (Sun and 

Parker, 2005; Kostic, 2011; Cartigny et al., 2013a; Parker, 2013). Are large sandy-gravelly bedforms in deeper 

water channels (Wynn et al., 2002) of similar origin? Or do these crescentic bedforms only occur on steep 

gradients in the proximal parts of systems? Are high density flows necessary to generate these bedforms, or 

can low density flows also generate them? Exactly what types of deposit are formed by supercritical flows? 

What is their preservation potential in the rock record? Are trains of more widely spaced scours the result of 

cyclic steps (Fig. 5; Fildani et al., 2006; Armitage et al., 2012; Covault et al., 2013) or are they due to 

retrogressive head scarps or local erosion (Sumner et al., 2013b, 2014)? This topic of supercritical flow will see 

important theoretical and experimental progress in the next few years, and links between process and 

product will require technically difficult field observations to be made.  

 

(C) Importance of turbulence damping, grain size, competence and capacity  

Recent advances: Recent experimental and numerical modelling has emphasised how surprisingly small 

(sometimes < 0.1% volume) concentrations of sediment (particularly cohesive mud) can damp turbulence, 

especially during the final stages of decelerating flows (Baas et al., 2009, 2011; Sumner et al., 2009; Cantero et 

al., 2012). These results are consistent with field observations from rivers where damping can modify velocity 

profiles in very low (< 0.1%) sediment concentration flows (Wright and Parker, 2004). Turbulence damping 

may lead to rapid sediment settling that increases near-bed sediment concentration, resulting in yet stronger 

damping. This positive feedback may lead to bifurcation in flow behaviour (Fig. 7a). Thus two stable states for 

flow of the same velocity are possible: a dilute state where strong turbulence balances non-hindered 

sediment settling, and a dense state where weak turbulence balances hindered settling (Fig. 7b; Winterwerp, 

2006). Turbulence damping and subsequent collapse, and associated sediment settling into denser non-

Newtonian near-bed layers within the flow (Fig. 7a), may explain the widespread occurrence of debris flow 

deposits in the relatively distal parts of hybrid beds (Ito, 2008; Haughton et al., 2009; Hodgson et al., 2009; 

Talling, 2013), although these debris flows can themselves sometimes be far travelled on low gradients.  

 

The importance of multiple grain sizes is emphasised (e.g. Harris et al., 2002) in developing realistic flow 

models, as they occur in most natural flows and strongly influence model results. Felletti proposed that the 

anisotropy of magnetic susceptibility (AMS) is a valuable tool to estimate paleocurrents in turbidites (Dall’Olio 



et. al., 2013). More generally, the relationship between flow speed and the mass of sediment suspended 

(capacity) and grain size suspended (competence) is of fundamental importance for flow behaviour, as noted 

previously (Kuenen and Sengupta, 1970; Hiscott, 1994). For instance it governs whether incorporation of 

eroded material into a flow will lead to acceleration or deceleration (Fig. 7c). We are just beginning to develop 

an appropriate underpinning theoretical framework for systems with multiple grain sizes (see, for example, 

Dorrell et al., 2013).  

 

Future work is needed to assess whether effective and widespread turbulence damping occurs in (especially 

decelerating) submarine flows and its implications for bed-scale and system-scale deposit architecture. 

Turbulence damping may need to be addressed more fully in numerical modelling of such flows (Cantero et 

al., 2012). The relationships between flow power, capacity and competence needs to be better constrained 

through experimental observation, and their implications explored by numerical modelling.  

 

(D) Submarine channels – flow dynamics and deposit architecture  

Recent advances: Our understanding of flow dynamics within submarine channels has advanced significantly 

in recent years, such as the controls on secondary flow around bends. A combination of laboratory 

experiments and numerical analysis has determined what controls the sense of secondary (across-channel) 

circulation in dilute flows, and whether it is reversed with respect to subaerial river bends. These controls 

include the height of the velocity maximum and Froude number (e.g. Corney et al., 2006; Imran et al., 2007; 

Peakall et al., 2007; Abad et al., 2011; Giorgio Serchi et al., 2011; Abd El-Gawad et al., 2012; Huang et al., 

2012; Dorell et al., 2013; Sumner et al., 2014). At least in some cases, the sense of secondary circulation is 

reversed with respect to that seen in river bends, as confirmed by recent ADCP measurements from saline 

underflows that enter the Black Sea (Parsons et al., 2011; Sumner et al., 2014).  

 

Diagnosis of a surface as either geomorphic or stratigraphic is fundamental to the interpretation of the 

stratigraphic record (Fig. 8; Sylvester et al., 2011). A geomorphic surface is that of the seafloor at a point in 

time. If a surface in the rock record or seismic data is inferred to be a geomorphic surface, then it is 

interpreted to have been locked in place with no subsequent interaction with overriding sediment gravity 

flows. This is most likely not the case for many large (several kilometers wide and hundreds of meters of 

relief), erosional surfaces interpreted in the subsurface, such as slope valleys offshore of West Africa (Mayall 

et al., 2006), which likely reflect a composite stratigraphic evolution, with multi-cycle phases of erosion and 

deposition (Fig. 8).  

 

Sylvester presented field observations from channels on the Niger Delta attempting to precisely define strong 

density stratification in flows, in which sand is carried only a short distance from the bed. Observations from 

cores in Monterey Canyon (Paull et al., 2010a) the Congo Channel (Babonneau et al., 2010), and Bengal Fan 

(Kolla et al., 2012) also show sand deposits restricted to near the canyon floor, implying that caution is 



needed in relating sand transport in flows to observations of deposits. This appears inconsistent with data 

reported by Xu (2011, 2013), who found sand in traps suspended 70-m above the floor of Monterey Canyon.  

 

Longer-term deposition and erosion by flows going through sinuous submarine channels and lobes results in a 

complex three-dimensional stratigraphic architecture and distribution of sand and mud (Fig. 8b; Deptuck et 

al., 2003, 2008; Hodgson et al., 2011; McHargue et al., 2011; Sylvester et al., 2011). The coarser-grained parts 

of these systems often form important hydrocarbon reservoirs. Detailed studies from the Niger Delta show 

the importance of flow size and type, which can result in highly variable submarine channel sequences.  

 

Ongoing work highlights the rich, composite nature of geomorphic and stratigraphic records of deep water 

channel systems. For instance, combined numerical modeling of flows with seafloor and shallow subsurface 

observations of a channel system of the California Borderland illustrates the morphodynamic evolution of 

cyclic steps within the channel thalweg (Covault et al., 2013). These cyclic steps, and other channelized 

deposits imaged in bathymetric datasets (e.g., in the fjords of British Columbia; Conway et al., 2012; Hughes-

Clark et al. 2012, 2013), demonstrate the composite nature of and downstream heterogeneity within 

channelized stratigraphy, with implications for characterization of petroleum reservoirs. The Cretaceous Tres 

Pasos Formation in Patagonia also illustrates composite, multi-cyclic evolution and downstream heterogeneity 

within channels (Romans et al., 2011; Hubbard et al., 2013).  

 

Future work should investigate how strong density stratification (and turbulence damping – see research 

direction C above) may affect secondary flow circulation in submarine channels. There is still much to learn 

about flow within these channels, as shown by the remarkable monitoring data of Cooper et al. (2012) from 

the Congo Canyon that recorded powerful flows lasting for over 6 days (Fig. 3a,b). Future coordinated efforts 

to monitor sinuous channels, perhaps based around test sites such as the Congo Canyon or Bute Inlet 

(Conway et al., 2012), can extend ongoing work on channelized saline underflows in the Black Sea (Parsons et 

al., 2010; Hiscott et al., 2013; Sumner et al., 2013b, 2014). Measurements from overbank areas (Khripounoff 

et al., 2003) can complement recent advances made by detailed studies of ancient outcrop and subsurface 

(Hodgson et al., 2011; Kane and Hodgson, 2011) and modern (Nakajima and Kneller, 2013) levee deposits.  

 

More generally, the petroleum industry requires a predictive understanding of the relationships between 

flows, deposit type and deposit architecture, particularly at scales below the resolution of 3-D seismic imaging 

(Fig. 8b). This requires advances in physical modelling in channels and channel-termination zones, validated by 

field studies, to be applied to numerical modelling (Fildani et al., 2006; Abd El-Gawad et al., 2012; Covault et 

al., 2013). It will be important to distinguish between geomorphic and stratigraphic surfaces within seismic 

datasets (Fig. 8a; Sylvester et al., 2011) to understand the longer term temporal evolution of channel systems 

and consequent reservoir heterogeneity. The value of high-resolution seismic data (both 2d and 3d) is 

emphasized for understanding the large-scale architecture of these systems and bridging the gap between 

conventional industry seismic data and outcrop-scale studies.  



(E) Turbidites as a record of other societally important geohazards  

Recent advances: In some situations, submarine flow deposits can provide a record of their triggers including 

major earthquakes, or faster-moving and more tsunamigenic landslides that disintegrate. However, it is often 

difficult to ascribe a flow deposit to a triggering mechanism with certainty (Piper and Normark, 2009; Talling, 

2014). Slower moving landslides are less tsunamigenic, and will disintegrate and form flows to a lesser extent. 

There is currently vigorous debate over the extent to which turbidites can be used as a record of major 

earthquakes (e.g. Goldfinger, 2011; Atwater and Griggs, 2012), and why some major earthquakes fail to 

produce extensive slope failure and widespread turbidites (Sumner et al., 2013a; Völker et al., 2012). Recent 

work on volcanic island landslides suggests that they can occur in multiple prolonged stages, as shown by 

associated turbidites with numerous subunits (Hunt et al., 2011), thereby reducing tsunami magnitude.  

 

A fascinating dataset is now available for flows associated with the 2011 Tohoku-Oki tsunami tsunami 

offshore Japan (Arai et al., 2013). There is also evidence of a common (temporally random) distribution of 

recurrence times for large-volume (> 0.1 km3) turbidites in disparate basin plain sequences (Clare et al., 

2014). If these turbidites are triggered by landslides, this distribution suggests that non-random processes 

such as sea level change are not a dominant control on large landslide frequency. Such a distribution also has 

implications for assessing future hazards from landslide-tsunamis and seafloor cable breaks. However, it is not 

clear whether all large volume turbidites are associated with slope failure, either from the open slope or from 

failure within canyons. This also raises the issue of the source for the very large volumes of sand seen within 

basin plain deposits - such as those examined during the workshop in the Marnoso-arenacea Fm. outcrops – 

suggesting that this sand may have been flushed from deposits of smaller flows in canyons (Fig. 9).  

 

Future research should concentrate on how submarine flow deposits record the frequency and character of 

geohazards that have significant societal importance, including whether future sea level rise or ocean 

warming will increase the frequency of landslides or hyperpycnal flows that trigger turbidity currents 

(Brothers et al., 2013; Urlaub et al., 2013, 2014). IODP drill cores may be needed to obtain statistically 

meaningful datasets for event frequency, such as for turbidites generated by major tsunamigenic slides in the 

Nordic Seas.  

 

(F) Signal Shredding and the Tempo of Sediment Transport  

Recent advances: Recent work has shown that the timing of increased submarine flow activity can be highly 

variable (Covault and Graham, 2010). Some systems are active during sea-level high-stands Covault et al., 

2007; Romans et al., 2009), and maximum activity need not occur during low-stands of sea level (Ducassou et 

al., 2009), as implied by older sequence stratigraphic models. The timing of large flows that reach basin plains 

may be temporally random, suggesting limited sea-level control for such events (Clare et al., 2014). The 

frequency of sediment transport also has important implications for the efficiency of organic carbon burial in 

submarine settings, and hence for the global carbon cycle (Galy et al., 2007). It is important to analyse the 



controls on larger scale system evolution on longer time scales, in order to constrain the influence of climate 

and tectono-morphologic controls on deep-sea sedimentation.  

 

Future work: A key point is whether changes in external controls such as climate or sea level are recorded in 

deep water settings, and the extent to which such signals become ‘shredded’ (Jerolmack and Paola, 2010) as 

they propagate through the depositional system. This question links to allied work on other sediment 

transport systems within the earth surface processes community. Further studies may focus on Quaternary 

systems or other locations where key external controls are independently well constrained and source-to-sink 

sediment budgets can be reconstructed (Clift et al., 2001; Covault et al., 2011; Guillocheau et al., 2012; Petter 

et al., 2013). This topic is important for understanding the climatic record within submarine fan sequences as 

well as how these systems are perturbed by humans. It has important implications for predicting the 

frequency, location, and  

geometry of subsurface oil and gas reservoirs, as well as the efficiency of organic carbon burial in submarine 

settings (Galy et al., 2007).  

 

(G) Modelling – how do you test models?  

Recent Advances: A variety of approaches have been used to simulate turbidity currents (e.g. Parker, 1982, 

1986; review of Meiburg and Kneller, 2010). They include integral (‘box’) models (e.g. Huppert, 1998), and 

layer-averaged shallow-water models (e.g. Parker et al., 1986) or models that simulate the vertical structure 

of the flow (e.g. Blanchette et al., 2005). Vertically resolved models may use Reynolds-averaged Navier-Stokes 

equations to capture vertical turbulent mixing, or possibly some other parameterisation of the turbulent 

motions, such as large eddy simulations (LES), and in recent years there have been direct numerical simulation 

of the governing equations (DNS; Meiburg and Kneller, 2010; Cantero et al., 2012), although such DNS 

simulations are computationally expensive and are currently only benchmarked against laboratory 

experiments. Indeed it is not currently possible to compute appropriately resolved DNS schemes over length-

scales relevant to many field settings. Most previous modelling has assumed that direct particle interactions 

can be neglected, and hence that the flow is dilute, although there are exceptions (e.g. Tinterri et al., 2003). 

Key areas of uncertainty are how sediment is transported close to the bed, how it is eroded and resuspended. 

It is also unclear how the presence of the sediment feedbacks on the fluid motions, interacting with 

turbulence, in some cases causing turbulence damping (see research direction C).  

 

The question of how to test numerical models is important. One view is that the fundamental fluid dynamical 

equations used in such models are already well tested, although another view is that it is unclear how to 

formulate models for full-scale submarine flows without knowing the concentration of sediment (especially 

whether they are dilute or dense – and in the latter case, the sedimentary interactions are not well 

understood at a fundamental level). One view is that it is sufficient for numerical models to be tested only 

against laboratory-scale experiments, although another view is that the scaling issues associated with some 

experiments may ensure that full-scale submarine flows are different in key regards. For instance, many (but 



not all) laboratory experiments are too weak to fully suspend sediment, and may be unable to carry the 

sediment load that is initially imposed upon them (see research direction D). Scaling of laboratory 

experiments needs to go beyond Froude or Reynolds Number similarity, and also consider the ratio of flow 

power (shear velocity) to sediment settling velocity, such as that needed to suspend sediment or generate 

bedload. Furthermore, the scale of laboratory experiments may preclude many other processes such as 

mixing with the surrounding ambient water, which may significantly alter the dynamics (see, for example, 

Johnson and Hogg 2013). Field data from the Agadir Basin, offshore NW Africa was presented by Stevenson et 

al. (2014). They showed that some large volume (100’s km3) and very long run-out (up to 2000 km) flows only 

suspended sand a few meters from the bed. This observation is at odds with many numerical models whereby 

flows are required to be thick (> 100 m) to be able to run-out for such distances.  

 

The links between flow conditions and sediment deposition or erosion are still sometimes poorly constrained 

(Talling et al., 2012), especially for higher-density (> ~10% volume sediment) and faster (> ~ 1 ms-1) flows 

(Cartigny et al., 2013b). This emphasises the importance of having direct observations that document near-

bed sediment concentrations and how flows interact with and sculpt the bed. For instance, even ADCPs often 

have a ‘blanking distance’ of up to a few metres above the bed, due to sidelobe interference, where they do 

not record meaningful data, yet field datasets such as that presented by Stevenson et al. (2014) suggest that 

this is where much of the sand may be carried.  

 

Possible future approaches are to focus both physical and numerical models on certain smaller scale 

processes within the flow, without capturing the overall flow geometry. Examples of this approach are 

physical modelling of the boundary layer under high shear stress (Sumner et al., 2008), or using high-

resolution direct numerical simulations (Cantero et al., 2012). Once detailed processes are understood and 

experimentally verified at a fundamental level, these processes can be parameterized, scaled-up and included 

in computationally cheaper models that have the capability of testing real-world-scale scenarios. Such models 

need to simulate stacking of deposits from multiple consecutive submarine flows above evolving seafloor 

morphologies to understand larger-scale sandbody geometries, such as those comprising oil and gas 

reservoirs (Groenenberg et al., 2010). Future research on these smaller scale processes, involving close co-

operation between modellers working at different resolutions, seems vital to establish models that can lead 

to step changes in our ability to model real-world-scale flows. If full-scale field observations are indeed 

needed (see research direction A), then a key question is what type of field data is sufficient for model 

validation. Future modelling research needs to ensure that key physical processes are appropriately captured 

at a fundamental level. It may need to consider during model formulation how the models can be tested 

against field data.  

 

Summary  

The objective of this contribution is to present a range of ideas originating from a recent workshop on how to 

make fundamental step-changes in understanding of turbidity currents, and to engage the wider community 



in that debate. There is a compelling need to make direct measurements from active flows, as their sediment 

concentration has never been measured in the deep ocean. Monitoring work should be coordinated around a 

series of ‘test sites’ (Table 1) that capture the main types of turbidite system. Such an initiative is timely and 

feasible due to major recent advances in sensors, mooring design and autonomous methods for data 

recovery, as illustrated by outstanding datasets collected recently at Squamish and Fraser Deltas (Fig. 1), 

Monterey Canyon (Fig. 2), Congo Canyon and offshore SE Taiwan (Fig. 3). Physical and numerical modelling 

must also play an important role in understanding the significance of field observations. Test sites should also 

include analysis of flow deposits using cores and seismic data, which may be the only information available for 

more infrequent types of flow. Linking flow and deposit character is critical for interpreting ancient turbidite 

sequences and for developing reservoir models used in petroleum development (Fig. 8; Table 1).  

 

Supercritical flow is most likely predominant in steeper proximal settings. Such flows may generate trains of 

up-slope migrating bedforms (Fig. 6) that have recently been mapped in many locations worldwide (Figs. 1, 2 

and 5), although dense liquefied flows or slumps may also be implicated in moving heavy blocks within such 

bedform fields. Future work should aim to understand the relationship of such bedforms to sand-gravel waves 

in deeper water, their preservation potential, whether they are the result or cause of cyclic hydraulic jumps, 

and the role of dense near-bed layers. It is also important to know the extent of turbulence damping within 

turbidity currents, especially as flows decelerate, and whether it produces late stage flow transformation (Fig. 

7). More precise quantitative constraints on what controls the sediment carrying capacity and competence of 

flows is essential. Considerable advances have been made in understanding flow dynamics in dilute 

experiments or models, and saline density currents in the field. It is now important to understand how higher 

sediment concentrations change this behaviour, perhaps through flow monitoring at suitable channelized test 

sites such as Congo Canyon or Bute Inlet.  

 

Turbidity currents and their deposits are in some cases an important record of other hazardous events, such 

as major earthquakes (Goldfinger, 2011). However, not every major earthquake appears to produce a 

widespread sediment flow (Völker et al., 2011; Sumner et al., 2012), and there is a need for more studies of 

the seafloor where it is known that a major earthquake occurred. Turbidites can record the emplacement 

dynamics of submarine landslides, and suggest that some volcanic island collapses occur in multiple stages 

over a prolonged period (Hunt et al., 2011). There is a need for long-term, well-dated sequences of turbidites 

to analyse the recurrence times of such hazards. Such studies would contribute to better understanding of the 

tempo of sediment transport by turbidity currents: whether external controls such as climate or sea level are 

recorded in their deposit sequences and the extent to which such signals are destroyed. Such work would 

contribute directly to predictive models of turbidite system architecture used in petroleum exploration.  

 

Finally, there is debate over how numerical models can be tested – for instance given the paucity of direct 

sediment concentration measurements from field-scale flows. Existing models mainly simulate dilute flows in 

which sediment interactions and viscous forces are neglected. An important objective for future modelling is 



to place better constraints on near-bed processes, such as erosion or sediment re-suspension from the bed, 

and turbulence damping as sediment concentrations increase (Fig. 7). It is hoped that this synthesis of ideas 

originating from the workshop will stimulate further research into the volumetrically most important 

sediment transport process on our planet.  
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Figures 

 
 
Figure 1  
Field observations from Squamish River delta in Howe Sound, British Columbia, Canada, that illustrate the 
concept of a test site for understanding flow triggers and dynamics (also see Table 1). Observations include 
repeat mapping, direct flow monitoring, and cores and shallow seismic data to constrain deposit geometries. 
The system is river fed, but the Squamish River does not reach the elevated sediment concentrations needed 
for generating plunging (hyperpycnal) flows. (A) Map of Howe Sound showing existing core and shallow 
seismic data. The Squamish River delta feeds an enclosed ‘natural laboratory’ dammed by a glacial moraine. 
(B) Swath bathymetric map of the delta front that comprises three active channels with lobes at their end. 
The yellow star indicates the position of the bottom tripod-mounted ADCP. (C) Map showing change in bed 
elevation along the three channel-lobe systems during a 4 month period. (D) Up-slope migrating crescentic 
bedforms in channels on the upper delta front. An animation of daily changes in position of these bedforms 
can be viewed at www.omg.unb.ca/Projects/SQ_2011_html/index.html . (E) Time series of flow velocity and 
backscatter from an ADCP on the distal lobe (yellow star in part B). (F) Timing of flow events constrained by 93 
bathymetric surveys repeated every weekday in each of the three channels, and by the ADCP on the distal 
lobe, compared to river discharge (red line). Five major failures of the delta lip occurred that coincide with 
unusually low spring tides or surges in river discharge. Figures are from Hughes Clarke et al. (2012, 2013).  
 

http://www.omg.unb.ca/Projects/SQ_2011_html/index.html


 

 
Figure 2  
(A) Field observations from Monterey Canyon offshore California, which is an example of a canyon system fed 
mainly by oceanographic processes (e.g. waves). The location of monitoring sites and extent of crescentic 
bedforms are indicated. (B) Velocity profiles through turbidity currents from ADCPs at sites shown in part A, 
from Xu et al., 2004. Consecutive profiles are shown for 1-hour intervals in the morning (AM), denoted by 
different coloured lines. (C) Detailed map showing crescentic bedforms that have been tracked from the 
movement of 40 kg blocks, and existing sediment cores, modified from Paull et al., 2010a. The arrows indicate 
movement of blocks away from where they were initially deployed. Inset shows the concrete blocks with 
beacons that allow them to be relocated.  
 



  
 
Figure 3  
Field measurements from powerful flows in river-fed canyons that ran out into the deep ocean. (A and B) 
Remarkably prolonged flow documented by ADCP measurements in the Congo Canyon, modified from Cooper 
et al. (2012). Black box shows the location of monitoring data shown below. Red and blue dots indicate sites 
of previous monitoring studies (Khripounoff et al., 2004; Vangresheim et al., 2009; and unpublished data). (C) 
Cable breaks along the Gaoping Canyon offshore SE Taiwan in 2009, due to a turbidity current following 
extreme river-flood discharge. (D) Timing of cable breaks compared to river-flood discharge. Red squares 
indicate the time of individual cable breaks. Flow 1 may have been produced by plunging river flood water. 
However, the more powerful Flow 2 occurred several days after the flood finished and was most likely 
triggered by failure of recently and rapidly deposited sediment. Inset is an aerial photograph of the Gaoping 
River mouth during the flood, showing the resulting plume of sediment. Parts C and D are modified from 
Carter et al. (2012).  
 



 
 
Figure 4  
(A) Summary of general biases in direct monitoring data, which documents more frequent flows, typically 
those that have shorter run-out distances and do not reach submarine fans (although see Fig. 3 for 
exceptions). Infrequent flows types must therefore be reconstructed mainly from deposits. (B) Changes in 
flow frequency that span several orders of magnitude along the Monterey Canyon-Fan system, offshore 
California. Modified from Fildani and Normark (2004), Klaucke et al. (2004), Xu et al. (2004, 2013) and Paull et 
al. (2005, 2010a,b).  
 



 
 
Figure 5 
Bathymetric features on the seafloor that have been interpreted, numerically modeled (B and C), and directly 
observed (D) to result from repeated hydraulic jumps in supercritical flows (cyclic steps). Note the variable 
length-scale and morphology of these bathymetric features. (A) Map showing the locations of these features. 
(B) Train of depressions interpreted and numerically modeled as cyclic steps on the outer bend of the 
Shepherd Meander of the Monterey East channel (Fildani et al., 2006). (C) Cyclic steps of the San Mateo 
Canyon-channel system (Covault et al., 2013). (D) Upstream migrating cyclic steps of the Squamish prodelta 
(Hughes Clark et al., 2012, 2013; also see Figure 1C, D).  
 



 
 
Figure 6  
Overview of the main super critical bedforms observed in open-channel (i.e. non subaqueous density current) 
flume experiments for unidirectional flows (Cartigny et al., 2013a). Each diagram shows the overlying open 
channel flow and resulting deposits. Major erosional surfaces (solid line) and individual time lines (dotted 
lines) are shown within the deposits.  
 



 
 
Figure 7  
(A and B) Modelling results of Winterwerp (2006) that suggest flows may evolve into two distinctly different 
stable states, depending on a small initial difference in sediment concentration. The figure illustrates how the 
sediment concentration profile at a single location evolves over time, from different initial conditions. The 
model includes feedbacks between density stratification and vertical turbulent mixing, and hindered settling 
of sediment at higher sediment concentrations (see Winterwerp, 2001, 2006). (C) Plot of flow speed against 
the sediment carrying capacity of a flow (i.e. equilibrium sediment concentration) based on theory and field 
data from the Yellow River (from Van Marum et al., 2008; after Winterwerp, 2001). It shows that there are 
two stable states for a flow with the same speed. The first stable state is dilute, whilst the second state is 
dense. Arrows denote how increases in flow concentration, such as those due to bed erosion, may affect the 
flow speed.  
 



 
Figure 8  
(A) Schematic summary of patterns of erosion and deposition in a vertical section across a submarine channel, 
from Sylvester et al. (2011). It shows why geomorphic surfaces (i.e. the seafloor at various times) may differ 
from the stratigraphic surfaces finally preserved in the rock record and subsurface seismic reflectors. (B) 
Model simulations showing the geomorphic surface corresponding to deepest erosion, the final geomorphic 
surface, and the stratigraphic surface (basal erosion surface). (C) Example of a high resolution seismic line 
across a submarine channel from the Indus Fan, which records long-term channel-system evolution (from 
Sylvester et al., 2011).  
 
  



 

 
 
Figure 9  
Where do the large volumes of sand originate, which are seen within large-volume flow deposits in distal fan-
settings? Alternative sources are from (i) open continental margin landslides, and (ii) flows that flush sand 
from canyons. Continental slope landslides have a range of scales. They can contain several hundred to 
several thousand km3 of sediment that is mainly mud.  


