13 research outputs found
Consumption of ultra-processed foods is associated with depression, mesocorticolimbic volume, and inflammation
The consumption of ultra-processed foods and drinks (UPF) has been associated with depression and inflammation and preclinical studies showed that some UPF components disrupt the amygdala-hippocampal complex. We combine diet, clinical and brain imaging data to investigate the relationship between the UPF consumption, depressive symptoms, and brain volumes in humans, considering interactions with obesity, and the mediation effect of inflammation biomarkers. One-hundred fifty-two adults underwent diet, depressive symptoms, anatomic magnetic resonance imaging assessments and laboratory tests. Relationships between the % of UPF consumption (in grams) of the total diet, depressive symptoms, and gray matter brain volumes were explored using several adjusted regression models, and in interaction with the presence of obesity. Whether inflammatory biomarkers (i.e., white blood cell count, lipopolysaccharide-binding protein, c-reactive protein) mediate the previous associations was investigated using R mediation package. High UPF consumption was associated with higher depressive symptoms in all participants (β = 0.178, CI = 0.008-0.261) and in those with obesity (β = 0.214, CI = −0.004-0.333). Higher consumption was also associated with lower volumes in the posterior cingulate cortex and the left amygdala, which in the participants with obesity also encompassed the left ventral putamen and the dorsal frontal cortex. White blood count levels mediated the association between UPF consumption and depressive symptoms (p = 0.022). Limitations: The present study precludes any causal conclusions. UPF consumption is associated with depressive symptoms and lower volumes within the mesocorticolimbic brain network implicated in reward processes and conflict monitoring. Associations were partially dependent on obesity and white blood cell count
Obesity status and obesity-associated gut dysbiosis effects on hypothalamic structural covariance
Background: Functional connectivity alterations in the lateral and medial hypothalamic networks have been associated with the development and maintenance of obesity, but the possible impact on the structural properties of these networks remains largely unexplored. Also, obesity-related gut dysbiosis may delineate specific hypothalamic alterations within obese conditions. We aim to assess the effects of obesity, and obesity and gut-dysbiosis on the structural covariance differences in hypothalamic networks, executive functioning, and depressive symptoms. Methods: Medial (MH) and lateral (LH) hypothalamic structural covariance alterations were identified in 57 subjects with obesity compared to 47 subjects without obesity. Gut dysbiosis in the subjects with obesity was defined by the presence of high (n = 28) and low (n = 29) values in a BMI-associated microbial signature, and posthoc comparisons between these groups were used as a proxy to explore the role of obesity-related gut dysbiosis on the hypothalamic measurements, executive function, and depressive symptoms. Results: Structural covariance alterations between the MH and the striatum, lateral prefrontal, cingulate, insula, and temporal cortices are congruent with previously functional connectivity disruptions in obesity conditions. MH structural covariance decreases encompassed postcentral parietal cortices in the subjects with obesity and gut-dysbiosis, but increases with subcortical nuclei involved in the coding food-related hedonic information in the subjects with obesity without gut-dysbiosis. Alterations for the structural covariance of the LH in the subjects with obesity and gut-dysbiosis encompassed increases with frontolimbic networks, but decreases with the lateral orbitofrontal cortex in the subjects with obesity without gut-dysbiosis. Subjects with obesity and gut dysbiosis showed higher executive dysfunction and depressive symptoms. Conclusions: Obesity-related gut dysbiosis is linked to specific structural covariance alterations in hypothalamic networks relevant to the integration of somatic-visceral information, and emotion regulation
Activation of Endogenous H2S Biosynthesis or Supplementation with Exogenous H2S Enhances Adipose Tissue Adipogenesis and Preserves Adipocyte Physiology in Humans
Aims: To investigate the impact of exogenous hydrogen sulfide (H2S) and its endogenous biosynthesis on human adipocytes and adipose tissue in the context of obesity and insulin resistance.
Results: Experiments in human adipose tissue explants and in isolated preadipocytes demonstrated that exogenous H2S or the activation of endogenous H2S biosynthesis resulted in increased adipogenesis, insulin action, sirtuin deacetylase, and PPARγ transcriptional activity, whereas chemical inhibition and gene knockdown of each enzyme generating H2S (CTH, CBS, MPST) led to altered adipocyte differentiation, cellular senescence, and increased inflammation. In agreement with these experimental data, visceral and subcutaneous adipose tissue expression of H2S-synthesising enzymes was significantly reduced in morbidly obese subjects in association with attenuated adipogenesis and increased markers of adipose tissue inflammation and senescence. Interestingly, weight-loss interventions (including bariatric surgery or diet/exercise) improved the expression of H2S biosynthesis-related genes. In human preadipocytes, the expression of CTH, CBS, and MPST genes and H2S production were dramatically increased during adipocyte differentiation. More importantly, the adipocyte proteome exhibiting persulfidation was characterized, disclosing that different proteins involved in fatty acid and lipid metabolism, the citrate cycle, insulin signaling, several adipokines, and PPAR, experienced the most dramatic persulfidation (85–98%).
Innovation: No previous studies investigated the impact of H2S on human adipose tissue. This study suggests that the potentiation of adipose tissue H2S biosynthesis is a possible therapeutic approach to improve adipose tissue dysfunction in patients with obesity and insulin resistance.
Conclusion: Altogether, these data supported the relevance of H2S biosynthesis in the modulation of human adipocyte physiology.Peer reviewe
Obesity status and obesity-associated gut dysbiosis effects on hypothalamic structural covariance
[Background]: Functional connectivity alterations in the lateral and medial hypothalamic networks have been associated with the development and maintenance of obesity, but the possible impact on the structural properties of these networks remains largely unexplored. Also, obesity-related gut dysbiosis may delineate specific hypothalamic alterations within obese conditions. We aim to assess the effects of obesity, and obesity and gut-dysbiosis on the structural covariance differences in hypothalamic networks, executive functioning, and depressive symptoms.[Methods]: Medial (MH) and lateral (LH) hypothalamic structural covariance alterations were identified in 57 subjects with obesity compared to 47 subjects without obesity. Gut dysbiosis in the subjects with obesity was defined by the presence of high (n = 28) and low (n = 29) values in a BMI-associated microbial signature, and posthoc comparisons between these groups were used as a proxy to explore the role of obesity-related gut dysbiosis on the hypothalamic measurements, executive function, and depressive symptoms.[Results]: Structural covariance alterations between the MH and the striatum, lateral prefrontal, cingulate, insula, and temporal cortices are congruent with previously functional connectivity disruptions in obesity conditions. MH structural covariance decreases encompassed postcentral parietal cortices in the subjects with obesity and gut-dysbiosis, but increases with subcortical nuclei involved in the coding food-related hedonic information in the subjects with obesity without gut-dysbiosis. Alterations for the structural covariance of the LH in the subjects with obesity and gut-dysbiosis encompassed increases with frontolimbic networks, but decreases with the lateral orbitofrontal cortex in the subjects with obesity without gut-dysbiosis. Subjects with obesity and gut dysbiosis showed higher executive dysfunction and depressive symptoms.[Conclusions]: Obesity-related gut dysbiosis is linked to specific structural covariance alterations in hypothalamic networks relevant to the integration of somatic-visceral information, and emotion regulation.This study has been funded by the Project Grant IRONMET (PI15/01934) from the ISCIII, and the Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program (POCTEFA 2014–2020) (JM Fernández-Real). Partial support was also obtained by the Ministerio de Economia y Competitividad, Spain, reference MTM2015-64465-C2-1-R (ML Calle). O Contreras-Rodriguez is funded by a “PERIS” postdoctoral fellowship (SLT006/17/00236) from the Health Department of the Catalan Government and by a “Miguel Servet” contract (CP20/00165) from the ISCIII. M Arnoriaga-Rodríguez is funded by a predoctoral Rio Hortega contract (CM19/00190) co-funded by European Social Fund “Investigating in your future” from the ISCIII.Peer reviewe
Microbiota alterations in proline metabolism impact depression
The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment
Recommended from our members
Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome
Background: The gut microbiome and iron status are known to play a role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear.
Results: Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n = 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n = 130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The transcriptomic findings were replicated in human primary hepatocytes, where iron supplementation also led to triglycerides accumulation and induced the expression of lipid and iron metabolism genes in synergy with palmitic acid. We further explored the direct impact of the microbiome on iron metabolism and liver fact accumulation through transplantation of faecal microbiota into recipient’s mice. In line with the results in humans, transplantation from ‘high ferritin donors’ resulted in alterations in several genes related to iron metabolism and fatty acid accumulation in recipient’s mice.
Conclusions: Altogether, a significant interplay among the gut microbiome, iron status and liver fat accumulation is revealed, with potential significance for target therapies
Gut bacterial ClpB-like gene function is associated with decreased body weight and a characteristic microbiota profile
Background: The chaperone ClpB, a bacterial protein, is a conformational antigen-mimetic of α-melanocyte-stimulating hormone (α-MSH) implicated in body weight regulation in mice. We here investigated the potential associations of gut bacterial ClpB-like gene function with obesity status and gut microbiota in humans. Results: Gut microbiota ClpB KEGG function was negatively associated with body mass index, waist circumference, and total fat mass (DEXA). The relative abundance (RA) of several phyla and families directly associated with ClpB was decreased in subjects with obesity. Specifically, the RA of Rikenellaceae, Clostridiaceae and not assigned Firmicutes were lower in subjects with obesity and positively associated with gut bacterial ClpB-like gene function (not assigned Firmicutes (r = 0.405, FDR = 2.93 × 10-2), Rikenellaceae (r = 0.217, FDR = 0.031), and Clostridiaceae (r = 0.239, FDR = 0.017)). The gut bacterial ClpB-like gene function was also linked to specific plasma metabolites (hippuric acid and 3-indolepropionic acid) and fecal lupeol. The α-MSH-like epitope similar to that of Escherichia coli ClpB was also identified in some sequences of those bacterial families. After fecal transplantation from humans to mice, the families that more contributed to ClpB-like gene function in humans were also associated with ClpB-like gene function in mice after adjusting for the donor's body mass index (not assigned Firmicutes (r = 0.621, p = 0.003), Prevotellaceae (r = 0.725, p = 4.1 × 10-7), Rikenellaceae (r = 0.702, p = 3.9 × 10-4), and Ruminococcaceae (r = 0.526, p = 0.014)). Clostridiaceae (r = - 0.445, p = 0.038) and Prevotellaceae RA (r = - 0.479, p = 0.024) and were also negatively associated with weight gain in mice. The absolute abundance (AA) of Prevotellaceae in mice was also positively associated with the gut bacterial ClpB-like gene function in mice. DESeq2 identified species of Prevotellaceae, both negatively associated with mice' weight gain and positively with gut bacterial ClpB-like gene function. Conclusions: In summary, gut bacterial ClpB-like gene function is associated with obesity status, a specific gut microbiota composition and a plasma metabolomics profile in humans that could be partially transplanted to mice. Video Abstract.This work was partially supported by research grants FIS (PI15/01934) from the Instituto de Salud Carlos III from Spain, SAF2015-65878-R from Ministry of Economy and Competitiveness, Prometeo/2018/A/133 from Generalitat Valenciana, Spain and also by Fondo Europeo de Desarrollo Regional (FEDER) funds, European Commission (FP7, NeuroPain #2013-602891), the Catalan Government (AGAUR, #SGR2017-669, ICREA Academia Award 2015), the Instituto de Salud Carlos III (RTA, #RD16/0017/0020), and the European Regional Development Fund (No. 01.2.2-LMT-K-718-02-0014). María Arnoriaga-Rodríguez is funded by Instituto de Salud Carlos III, Río Hortega (CP19/00190). Jordi Mayneris-Perxachs is funded by Instituto de Salud Carlos III, Miguel Servet (CP18/00009). The project has also been 65% cofinanced by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020). POCTEFA aims to reinforce the economic and social integration of the French–Spanish–Andorran border. Its support is focused on developing economic, social and environmental cross-border activities through joint strategies favouring sustainable territorial development
Safety and feasibility of the PEPPER adaptive bolus advisor and safety system; a randomized control study
Background: The Patient Empowerment through Predictive Personalized Decision Support (PEPPER) system provides personalized bolus advice for people with type 1 diabetes. The system incorporates an adaptive insulin recommender system (based on case-based reasoning, an artificial intelligence methodology), coupled with a safety system, which includes predictive glucose alerts and alarms, predictive low-glucose suspend, personalized carbohydrate recommendations, and dynamic bolus insulin constraint. We evaluated the safety and efficacy of the PEPPER system compared to a standard bolus calculator. Methods: This was an open-labeled multicenter randomized controlled crossover study. Following 4-week run-in, participants were randomized to PEPPER/Control or Control/PEPPER in a 1:1 ratio for 12 weeks. Participants then crossed over after a washout period. The primary end-point was percentage time in range (TIR, 3.9–10.0 mmol/L [70–180 mg/dL]). Secondary outcomes included glycemic variability, quality of life, and outcomes on the safety system and insulin recommender. Results: Fifty-four participants on multiple daily injections (MDI) or insulin pump completed the run-in period, making up the intention-to-treat analysis. Median (interquartile range) age was 41.5 (32.3–49.8) years, diabetes duration 21.0 (11.5–26.0) years, and HbA1c 61.0 (58.0–66.1) mmol/mol. No significant difference was observed for percentage TIR between the PEPPER and Control groups (62.5 [52.1–67.8] % vs. 58.4 [49.6–64.3] %, respectively, P = 0.27). For quality of life, participants reported higher perceived hypoglycemia with the PEPPER system despite no objective difference in time spent in hypoglycemia. Conclusions: The PEPPER system was safe, but did not change glycemic outcomes, compared to control. There is wide scope for integrating PEPPER into routine diabetes management for pump and MDI users. Further studies are required to confirm overall effectiveness
Presence of blastocystis in gut microbiota is associated with cognitive traits and decreased executive function
Growing evidence implicates the gut microbiome in cognition. Blastocystis is a common gut single-cell eukaryote parasite frequently detected in humans but its potential involvement in human pathophysiology has been poorly characterized. Here we describe how the presence of Blastocystis in the gut microbiome was associated with deficits in executive function and altered gut bacterial composition in a discovery (n = 114) and replication cohorts (n = 942). We also found that Blastocystis was linked to bacterial functions related to aromatic amino acids metabolism and folate-mediated pyrimidine and one-carbon metabolism. Blastocystis-associated shifts in bacterial functionality translated into the circulating metabolome. Finally, we evaluated the effects of microbiota transplantation. Donor's Blastocystis subtypes led to altered recipient's mice cognitive function and prefrontal cortex gene expression. In summary, Blastocystis warrant further consideration as a novel actor in the gut microbiome-brain axis.This study was partially funded by the Catalan Government (AGAUR, #SGR2017-0734, ICREA Academia Award 2021) to J.M.F.-R., Instituto de Salud Carlos III (Madrid, Spain) through the projects PI15/01934, PI18/01022 and PI21/01361 to JMF-R, the project PI20/01090 (Co-funded by European Regional Development Fund “A way to make Europe”) to JM-P, and the project PI20/0155 to MP-O; the grants SAF2015-65878-R from Ministry of Economy and Competitiveness, Prometeo/2018/A/133 from Generalitat Valenciana, Spain and also by Fondo Europeo de Desarrollo Regional (FEDER) funds (“A way to build Europe”), European Commission (FP7), the Catalan Government (AGAUR, #SGR2017-669, ICREA Academia Award 2020 and Ministerio de Ciencia e Innovación PID2020- 120029GB-I00/MICIN/AEI/10.13039/501100011033, and RD21/0009/0019, European Commission-DG Research” (PainFact, H2020-SC1-2019-2-RTD-848099, QSPain Relief, H2020-SC1-2019-2-RTD-848068 to R.M.), the Spanish Instituto de Salud Carlos III (RTA, #RD16/0017/0020) and the European Regional Development Fund (project No. 01.2.2-LMT-K-718-02-0014) under grant agreement with the Research Council of Lithuania (LMTLT). We also acknowledge funding from the Spanish Ministry of Science, Innovation and Universities (RTI2018-099200-B-I00), and the Generalitat of Catalonia (Agency for Management of University and Research Grants (2017SGR696) and Department of Health (SLT002/16/00250)) to RP; María Arnoriaga-Rodríguez is funded by Instituto de Salud Carlos III, Río Hortega (CM19/00190). JM-P is funded by Instituto de Salud Carlos III through the Miguel Servet Program project CP18/00009 (Co-funded by the European Social Fund “Investing in your future”). MJ is a “Serra-Hunter” fellow