202 research outputs found

    Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients

    Get PDF
    Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 mu g/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 mu g/l, P = 0.0004; itself higher than the normal level (3.4 mu g/l, range from 0.5 to 17.2 mu g/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level >= 7 mu g/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels >= 7 mu g/l is 46%. Therefore, selection of patients with an AFP level above 7 mu g/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy

    NMDA receptor genotypes associated with the vulnerability to develop dyskinesia

    Get PDF
    Dyskinesias are involuntary muscle movements that occur spontaneously in Huntington's disease (HD) and after long-term treatments for Parkinson's disease (levodopa-induced dyskinesia; LID) or for schizophrenia (tardive dyskinesia, TD). Previous studies suggested that dyskinesias in these three conditions originate from different neuronal pathways that converge on overstimulation of the motor cortex. We hypothesized that the same variants of the N-methyl--aspartate receptor gene that were previously associated with the age of dyskinesia onset in HD were also associated with the vulnerability for TD and not LID. Genotyping patients with LID and TD revealed, however, that these two variants were dose-dependently associated with susceptibility to LID, but not TD. This suggested that LID, TD and HD might arise from the same neuronal pathways, but TD results from a different mechanism

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    On the genetic involvement of apoptosis-related genes in Crohn's disease as revealed by an extended association screen using 245 markers: no evidence for new predisposing factors

    Get PDF
    Crohn's disease (CD) presents as an inflammatory barrier disease with characteristic destructive processes in the intestinal wall. Although the pathomechanisms of CD are still not exactly understood, there is evidence that, in addition to e.g. bacterial colonisation, genetic predisposition contributes to the development of CD. In order to search for predisposing genetic factors we scrutinised 245 microsatellite markers in a population-based linkage mapping study. These microsatellites cover gene loci the encoded protein of which take part in the regulation of apoptosis and (innate) immune processes. Respective loci contribute to the activation/suppression of apoptosis, are involved in signal transduction and cell cycle regulators or they belong to the tumor necrosis factor superfamily, caspase related genes or the BCL2 family. Furthermore, several cytokines as well as chemokines were included. The approach is based on three steps: analyzing pooled DNAs of patients and controls, verification of significantly differing microsatellite markers by genotyping individual DNA samples and, finally, additional reinvestigation of the respective gene in the region covered by the associated microsatellite by analysing single-nucleotide polymorphisms (SNPs). Using this step-wise process we were unable to demonstrate evidence for genetic predisposition of the chosen apoptosis- and immunity-related genes with respect to susceptibility for CD

    The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing

    Get PDF
    RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre–mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500) animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214) suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene) and sfa-1 (the C. elegans SF1/BBP gene). We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214) animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing.National Natural Science Foundation (China) (Grant 30971639)United States. National Institutes of Health (Grant GM24663

    Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are highly conserved, noncoding RNAs involved in post-transcriptional gene silencing. They have been shown to participate in a wide range of biological processes, including myogenesis and muscle regeneration. The goal of this study is to test the hypothesis that myo-miRs (myo = muscle + miR = miRNA) expression is altered in muscle from patients affected by myotonic dystrophy type 1 (DM1), the most frequently inherited neuromuscular disease in adults. In order to gain better insights about the role of miRNAs in the DM1 pathogenesis, we have also analyzed the muscular expression of miR-103 and miR-107, which have been identified <it>in silico </it>as attractive candidates for binding to the <it>DMPK </it>mRNA.</p> <p>Methods</p> <p>To this aim, we have profiled the expression of miR-133 (miR-133a, miR-133b), miR-1, miR-181 (miR-181a, miR-181b, miR-181c) and miR-206, that are specifically induced during myogenesis in cardiac and skeletal muscle tissues. miR-103 and miR-107, highly expressed in brain, heart and muscle have also been included in this study. QRT-PCR experiments have been performed on RNA from vastus lateralis biopsies of DM1 patients (n = 7) and control subjects (n = 4). Results of miRNAs expression have been confirmed by Northern blot, whereas <it>in situ </it>hybridization technique have been performed to localize misexpressed miRNAs on muscle sections from DM1 and control individuals.</p> <p>Results</p> <p>Only miR-206 showed an over-expression in 5 of 7 DM1 patients (threshold = 2, fold change between 1.20 and 13.22, average = 5.37) compared to the control group. This result has been further confirmed by Northern blot analysis (3.37-fold overexpression, <it>R</it><sup>2 </sup>= 0.89). <it>In situ </it>hybridization localized miR-206 to nuclear site both in normal and DM1 tissues. Cellular distribution in DM1 tissues includes also the nuclear regions of centralized nuclei, with a strong signal corresponding to nuclear clumps.</p> <p>Conclusions</p> <p>This work provides, for the first time, evidences about miRNAs misexpression in DM1 muscle tissues, adding a new element in the pathogenesis of this complex genetic disease.</p

    Efficacy of Fumaric Acid Esters in the R6/2 and YAC128 Models of Huntington's Disease

    Get PDF
    Huntington's disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disease. The exact sequel of events finally resulting in neurodegeneration is only partially understood and there is no established protective treatment so far. Some lines of evidence speak for the contribution of oxidative stress to neuronal tissue damage. The fumaric acid ester dimethylfumarate (DMF) is a new disease modifying therapy currently in phase III studies for relapsing-remitting multiple sclerosis. DMF potentially exerts neuroprotective effects via induction of the transcription factor “nuclear factor E2-related factor 2” (Nrf2) and detoxification pathways. Thus, we investigated here the therapeutic efficacy of DMF in R6/2 and YAC128 HD transgenic mice which mimic many aspects of HD and are characterized by an enhanced generation of free radicals in neurons. Treatment with DMF significantly prevented weight loss in R6/2 mice between postnatal days 80–90. At the same time, DMF treatment led to an attenuated motor impairment as measured by the clasping score. Average survival in the DMF group was 100.5 days vs. 94.0 days in the placebo group. In the histological analysis on day 80, DMF treatment resulted in a significant preservation of morphologically intact neurons in the striatum as well as in the motor cortex. DMF treatment resulted in an increased Nrf2 immunoreactivity in neuronal subpopulations, but not in astrocytes. These beneficial effects were corroborated in YAC128 mice which, after one year of DMF treatment, also displayed reduced dyskinesia as well as a preservation of neurons. In conclusion, DMF may exert beneficial effects in mouse models of HD. Given its excellent side effect profile, further studies with DMF as new therapeutic approach in HD and other neurodegenerative diseases are warranted
    • …
    corecore