574 research outputs found

    Detection of changes in mitochondrial hydrogen sulfide (H2S) in vivo in the fish model Poecilia mexicana (Poeciliidae)

    Get PDF
    In this paper, we outline the use of a mitochondria-targeted ratiometric mass spectrometry probe, MitoA, to detect in vivo changes in mitochondrial hydrogen sulfide (H2S) in Poecilia mexicana (family Poeciliidae). MitoA is introduced via intraperitoneal injection into the animal and is taken up by mitochondria, where it reacts with H2S to form the product MitoN. The MitoN/MitoA ratio can be used to assess relative changes in the amounts of mitochondrial H2S produced over time. We describe the use of MitoA in the fish species P. mexicana to illustrate the steps for adopting the use of MitoA in a new organism, including extraction and purification of MitoA and MitoN from tissues followed by tandem mass spectrometry. In this proof-of-concept study we exposed H2S tolerant P. mexicana to 59 µM free H2S for 5 h, which resulted in increased MitoN/MitoA in brain and gills, but not in liver or muscle, demonstrating increased mitochondrial H2S levels in select tissues following whole-animal H2S exposure. This is the first time that accumulation of H2S has been observed in vivo during whole-animal exposure to free H2S using MitoA

    Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study

    Get PDF
    Over recent decades the highest rates of water column warming and sea ice loss across the Arctic Ocean have been observed in the Barents Sea. These physical changes have resulted in rapid ecosystem adjustments, manifesting as a northward migration of temperate phytoplankton species at the expense of silica-based diatoms. These changes will potentially alter the composition of phytodetritus deposited at the seafloor, which acts as a biogeochemical reactor and is pivotal in the recycling of key nutrients, such as silicon (Si). To appreciate the sensitivity of the Barents Sea benthic system to the observed changes in surface primary production, there is a need to better understand this benthic–pelagic coupling. Stable Si isotopic compositions of sediment pore waters and the solid phase from three stations in the Barents Sea reveal a coupling of the iron (Fe) and Si cycles, the contemporaneous dissolution of lithogenic silicate minerals (LSi) alongside biogenic silica (BSi), and the potential for the reprecipitation of dissolved silicic acid (DSi) as authigenic clay minerals (AuSi). However, as reaction rates cannot be quantified from observational data alone, a mechanistic understanding of which factors control these processes is missing. Here, we employ reaction–transport modelling together with observational data to disentangle the reaction pathways controlling the cycling of Si within the seafloor. Processes such as the dissolution of BSi are active on multiple timescales, ranging from weeks to hundreds of years, which we are able to examine through steady state and transient model runs. Steady state simulations show that 60 % to 98 % of the sediment pore water DSi pool may be sourced from the dissolution of LSi, while the isotopic composition is also strongly influenced by the desorption of Si from metal oxides, most likely Fe (oxyhydr)oxides (FeSi), as they reductively dissolve. Further, our model simulations indicate that between 2.9 % and 37 % of the DSi released into sediment pore waters is subsequently removed by a process that has a fractionation factor of approximately −2 ‰, most likely representing reprecipitation as AuSi. These observations are significant as the dissolution of LSi represents a source of new Si to the ocean DSi pool and precipitation of AuSi an additional sink, which could address imbalances in the current regional ocean Si budget. Lastly, transient modelling suggests that at least one-third of the total annual benthic DSi flux could be sourced from the dissolution of more reactive, diatom-derived BSi deposited after the surface water bloom at the marginal ice zone. This benthic–pelagic coupling will be subject to change with the continued northward migration of Atlantic phytoplankton species, the northward retreat of the marginal ice zone and the observed decline in the DSi inventory of the subpolar North Atlantic Ocean over the last 3 decades

    Culturally-adapted and audio-technology assisted HIV/AIDS awareness and education program in rural Nigeria: a cohort study

    Get PDF
    Background: HIV-awareness programs tailored toward the needs of rural communities are needed. We sought to quantify change in HIV knowledge in three rural Nigerian villages following an integrated culturally adapted and technology assisted educational intervention. Methods: A prospective 14-week cohort study was designed to compare short-term changes in HIV knowledge between seminar-based education program and a novel program, which capitalized on the rural culture of small-group oral learning and was delivered by portable digital-audio technology. Results: Participants were mostly Moslem (99%), male (53.5%), with no formal education (55%). Baseline HIV knowledge was low (\u3c 80% correct answers for 9 of the 10 questions). Knowledge gain was higher (p \u3c 0.0001 for 8 of 10 questions) in the integrated culturally adapted and technology-facilitated (n = 511) compared with the seminar-based (n = 474) program. Conclusions: Baseline HIV-awareness was low. Culturally adapted, technology-assisted HIV education program is a feasible cost-effective method of raising HIV awareness among low-literacy rural communities

    Stable silicon isotopes uncover a mineralogical control on the benthic silicon cycle in the Arctic Barents Sea

    Get PDF
    Biogeochemical cycling of silicon (Si) in the Barents Sea is under considerable pressure from physical and chemical changes, including dramatic warming and sea ice retreat, together with a decline in dissolved silicic acid (DSi) concentrations of Atlantic inflow waters since 1990. Associated changes in the community composition of phytoplankton blooms will alter the material comprising the depositional flux, which will subsequently influence recycling processes at and within the seafloor. In this study we assess the predominant controls on the early diagenetic cycling of Si, a key nutrient in marine ecosystems, by combining stable isotopic analysis (Si) of pore water DSi and of operationally defined reactive pools of the solid phase. We show that low biogenic silica (BSi) contents (0.26–0.52 wt% or 92–185 mol g dry wt−1) drive correspondingly low asymptotic concentrations of pore water DSi of 100 M, relative to biosiliceous sediments (20 wt% BSi) wherein DSi can reach 900 M. While Barents Sea surface sediments appear almost devoid of BSi, we present evidence for the rapid recycling of bloom derived BSi that generates striking transient peaks in sediment pore water [DSi] of up to 300 M, which is a feature that is subject to future shifts in phytoplankton community compositions. Using a simple isotopic mass balance calculation we show that at two of three stations the pore water DSi pool at 0.5 cm below the seafloor (+0.96 to +1.36 ‰) is sourced from the mixing of core top waters (+1.46 to +1.69 ‰) with the dissolution of BSi (+0.82 to +1.50 ‰), supplemented with a lithogenic Si source (LSi) (−0.89 0.16‰). Further, our sediment pore water Si profiles uncover a coupling of the Si cycle with the redox cycling of metal oxides associated with isotopically light Si (−2.88 0.17‰). We suggest that a high LSi:BSi ratio and apparent metal oxide influence could lead to a degree of stability in the annual background benthic flux of DSi, despite current pressures on pelagic phytoplankton communities. Coupled with supporting isotopic evidence for the precipitation of authigenic clays in Barents Sea sediment cores, our observations have implications for the regional Si budget

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore