124 research outputs found
Constant-degree graph expansions that preserve the treewidth
Many hard algorithmic problems dealing with graphs, circuits, formulas and
constraints admit polynomial-time upper bounds if the underlying graph has
small treewidth. The same problems often encourage reducing the maximal degree
of vertices to simplify theoretical arguments or address practical concerns.
Such degree reduction can be performed through a sequence of splittings of
vertices, resulting in an _expansion_ of the original graph. We observe that
the treewidth of a graph may increase dramatically if the splittings are not
performed carefully. In this context we address the following natural question:
is it possible to reduce the maximum degree to a constant without substantially
increasing the treewidth?
Our work answers the above question affirmatively. We prove that any simple
undirected graph G=(V, E) admits an expansion G'=(V', E') with the maximum
degree <= 3 and treewidth(G') <= treewidth(G)+1. Furthermore, such an expansion
will have no more than 2|E|+|V| vertices and 3|E| edges; it can be computed
efficiently from a tree-decomposition of G. We also construct a family of
examples for which the increase by 1 in treewidth cannot be avoided.Comment: 12 pages, 6 figures, the main result used by quant-ph/051107
Families with infants: a general approach to solve hard partition problems
We introduce a general approach for solving partition problems where the goal
is to represent a given set as a union (either disjoint or not) of subsets
satisfying certain properties. Many NP-hard problems can be naturally stated as
such partition problems. We show that if one can find a large enough system of
so-called families with infants for a given problem, then this problem can be
solved faster than by a straightforward algorithm. We use this approach to
improve known bounds for several NP-hard problems as well as to simplify the
proofs of several known results.
For the chromatic number problem we present an algorithm with
time and exponential space for graphs of average
degree . This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput.
Syst. 2010] that works for graphs of bounded maximum (as opposed to average)
degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013].
For the traveling salesman problem we give an algorithm working in
time and polynomial space for graphs of average
degree . The previously known results of this kind is a polyspace algorithm
by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and
an exponential space algorithm for bounded average degree by Cygan and
Pilipczuk [ICALP 2013].
For counting perfect matching in graphs of average degree~ we present an
algorithm with running time and polynomial
space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and
Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at
http://arxiv.org/abs/1410.220
Compact Labelings For Efficient First-Order Model-Checking
We consider graph properties that can be checked from labels, i.e., bit
sequences, of logarithmic length attached to vertices. We prove that there
exists such a labeling for checking a first-order formula with free set
variables in the graphs of every class that is \emph{nicely locally
cwd-decomposable}. This notion generalizes that of a \emph{nicely locally
tree-decomposable} class. The graphs of such classes can be covered by graphs
of bounded \emph{clique-width} with limited overlaps. We also consider such
labelings for \emph{bounded} first-order formulas on graph classes of
\emph{bounded expansion}. Some of these results are extended to counting
queries
A Probabilistic Framework for Security Scenarios with Dependent Actions
This work addresses the growing need of performing meaningful probabilistic analysis of security. We propose a framework that integrates the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. This allows us to perform probabilistic evaluation of attack–defense scenarios involving dependent actions. To improve the efficiency of our computations, we make use of inference algorithms from Bayesian networks and encoding techniques from constraint reasoning. We discuss the algebraic theory underlying our framework and point out several generalizations which are possible thanks to the use of semiring theory
Deleting edges to restrict the size of an epidemic: a new application for treewidth
Motivated by applications in network epidemiology, we consider the problem of determining whether it is possible to delete at most k edges from a given input graph (of small treewidth) so that the resulting graph avoids a set FF of forbidden subgraphs; of particular interest is the problem of determining whether it is possible to delete at most k edges so that the resulting graph has no connected component of more than h vertices, as this bounds the worst-case size of an epidemic. While even this special case of the problem is NP-complete in general (even when h=3h=3 ), we provide evidence that many of the real-world networks of interest are likely to have small treewidth, and we describe an algorithm which solves the general problem in time 2O(|F|wr)n2O(|F|wr)n on an input graph having n vertices and whose treewidth is bounded by a fixed constant w, if each of the subgraphs we wish to avoid has at most r vertices. For the special case in which we wish only to ensure that no component has more than h vertices, we improve on this to give an algorithm running in time O((wh)2wn)O((wh)2wn) , which we have implemented and tested on real datasets based on cattle movements
Tractability in Constraint Satisfaction Problems: A Survey
International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP
Open problems on graph coloring for special graph classes.
For a given graph G and integer k, the Coloring problem is that of testing whether G has a k-coloring, that is, whether there exists a vertex mapping c:V→{1,2,…}c:V→{1,2,…} such that c(u)≠c(v)c(u)≠c(v) for every edge uv∈Euv∈E. We survey known results on the computational complexity of Coloring for graph classes that are hereditary or for which some graph parameter is bounded. We also consider coloring variants, such as precoloring extensions and list colorings and give some open problems in the area of on-line coloring
Graph Minors and Parameterized Algorithm Design
Abstract. The Graph Minors Theory, developed by Robertson and Sey-mour, has been one of the most influential mathematical theories in pa-rameterized algorithm design. We present some of the basic algorithmic techniques and methods that emerged from this theory. We discuss its direct meta-algorithmic consequences, we present the algorithmic appli-cations of core theorems such as the grid-exclusion theorem, and we give a brief description of the irrelevant vertex technique
- …