448 research outputs found

    European deposit insurance scheme and bank board composition

    Get PDF
    This paper investigates whether bank corporate governance can play a role in the aggregate risk score assigned to individual banks by regulators. We exploit regulatory changes at the European level and a fixed-effects model to reduce endogeneity issues. We contribute to the existing literature on bank corporate governance by showing that board age significantly increases bank risk. This may indicate that boards formed by older members are more entrenched and can also be less dynamic. Board size and gender composition of the board are risk-neutral

    Collisionless evaporation from cluster elliptical galaxies

    Get PDF
    We describe a particular aspect of the effects of the parent cluster tidal field (CTF) on stellar orbits inside cluster Elliptical galaxies. In particular we discuss, with the aid of a simple numerical model, the possibility that collisionless stellar evaporation from elliptical galaxies is an effective mechanism for the production of the recently discovered intracluster stellar populations. A preliminary investigation, based on very idealized galaxy density profiles (Ferrers density distributions), showed that over an Hubble time, the amount of stars lost by a representative galaxy may sum up to the 10% of the initial galaxy mass, a fraction in interesting agreement with observational data. The effectiveness of this mechanism is due to the fact that the galaxy oscillation periods near equilibrium configurations in the CTF are comparable to stellar orbital times in the external galaxy regions. Here we extend our previous study to more realistic galaxy density profiles, in particular by adopting a triaxial Hernquist model.Comment: 6 pages, 2 figures. To appear on "Lecture Notes in Physics", proceedings of the Workshop on "Galaxies and Chaos. Theory and Observations", Athens (September 16-19, 2002), G. Contopoulos and N. Voglis, ed

    Polar Ring Galaxies and the Tully Fisher relation: implications for the dark halo shape

    Full text link
    We have investigated the Tully-Fisher relation for Polar Ring Galaxies (PRGs), based on near infrared, optical and HI data available for a sample of these peculiar objects. The total K-band luminosity, which mainly comes from the central host galaxy, and the measured HI linewidth at 20% of the peak line flux density, which traces the potential in the polar plane, place most polar rings of the sample far from the Tully-Fisher relation defined for spiral galaxies, with many PRGs showing larger HI linewidths than expected for the observed K band luminosity. This result is confirmed by a larger sample of objects, based on B-band data. This observational evidence may be related to the dark halo shape and orientation in these systems, which we study by numerical modeling of PRG formation and dynamics: the larger rotation velocities observed in PRGs can be explained by a flattened polar halo, aligned with the polar ring.Comment: 22 pages, 8 postscript figures, accepted for publication in Astrophysical Journa

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    The stellar halos of ETGs in the IllustrisTNG simulations: II. Accretion, merger history, and dark halo connection

    Full text link
    Stellar halos in early-type galaxies (ETGs) are shaped by their accretion and merger histories. We use a sample of 1114 ETGs in the TNG100 simulation with stellar masses 1010.3M/M101210^{10.3}\leq M_{*}/M_\odot\leq 10^{12}, selected at z=0 within the range of g-r colour and lambda-ellipticity diagram populated by observed ETGs. We study how the rotational support and intrinsic shapes of the stellar halos depend on the fraction of stars accreted, overall and separately by major, minor, and mini mergers. Accretion histories in TNG100 ETGs as well as the radial distributions of ex-situ stars fex(R)f_{ex}(R) strongly correlate with stellar mass. Low-mass ETGs have characteristic peaked rotation profiles and near-oblate shapes with rounder halos that are completely driven by the in-situ stars. At high fexf_{ex} major mergers decrease the in-situ peak in rotation velocity, flatten the V/σ(R)V_{*}/\sigma_{*}(R) profiles, and increase the triaxiality of the stellar halos. Kinematic transition radii do not trace the transition between in-situ and ex-situ dominated regions, but for systems with M>1010.6MM_{*}>10^{10.6}M_\odot the local rotational support and triaxiality of the stellar halos is anti-correlated with the local ex-situ fraction fex(R)f_{ex}(R) at fixed MM_{*}. These correlations are followed by fast and slow rotators alike with a continuous and overlapping sequence of properties. Merger events dynamically couple stars and dark matter: in high mass ETGs and at large radii where fex0.5f_{ex}\gtrsim0.5, both components tend to have similar intrinsic shapes and rotational support, and nearly aligned principal axes and spin directions. Based on these results we suggest that extended photometry and kinematics of massive ETGs (M>1010.6MM_{*}>10^{10.6}M_\odot) can be used to estimate the local fraction of ex-situ stars and to approximate the intrinsic shapes and rotational support of the co-spatial dark matter component. [abridged]Comment: 22 pages, 17 figures, submitted to A&

    The stellar halos of ETGs in the IllustrisTNG simulations: the photometric and kinematic diversity of galaxies at large radii

    Full text link
    We characterize the photometric and kinematic properties of simulated early-type galaxy (ETG) stellar halos, and compare them to observations. We select a sample of ~1200 ETGs in the TNG100 and TNG50 simulations, spanning a stellar mass range of 1010.31012M10^{10.3}-10^{12}M_{\odot} and within the range of (g-r) colour and lambda-ellipticity diagram populated by observed ETGs. We determine photometric parameters, intrinsic shapes, and kinematic observables in their extended stellar halos. We study the variation in kinematics from center to halo and connect it to a change in the intrinsic shape of the galaxies. We find that the simulated galaxy sample reproduces the diversity of kinematic properties observed in ETG halos. Simulated fast rotators (FRs) divide almost evenly in one third having flat lambda profiles and high halo rotational support, a third with gently decreasing profiles, and another third with low halo rotation. Slow rotators (SRs) tend to have increased rotation in the outskirts, with half of them exceeding lambda=0.2. For M>1011.5MM_{*}>10^{11.5}M_{\odot} halo rotation is unimportant. A similar variety of properties is found for the stellar halo intrinsic shapes. Rotational support and shape are deeply related: the kinematic transition to lower rotational support is accompanied by a change towards rounder intrinsic shape. Triaxiality in the halos of FRs increases outwards and with stellar mass. Simulated SRs have relatively constant triaxiality profiles. Simulated stellar halos show a large variety of structural properties, with quantitative but no clear qualitative differences between FRs and SRs. At the same stellar mass, stellar halo properties show a gradual transition and significant overlap between the two families, despite the clear bimodality in the central regions. This is in agreement with observations of extended photometry and kinematics. [abridged]Comment: accepted for publication in A&A, 25 pages, 22 figure

    Wandering Stars: an Origin of Escaped Populations

    Full text link
    We demonstrate that stars beyond the virial radii of galaxies may be generated by the gravitational impulse received by a satellite as it passes through the pericenter of its orbit around its parent. These stars may become energetically unbound (escaped stars), or may travel to further than a few virial radii for longer than a few Gyr, but still remain energetically bound to the system (wandering stars). Larger satellites (10-100% the mass of the parent), and satellites on more radial orbits are responsible for the majority of this ejected population. Wandering stars could be observable on Mpc scales via classical novae, and on 100 Mpc scales via SNIa. The existence of such stars would imply a corresponding population of barely-bound, old, high velocity stars orbiting the Milky Way, generated by the same physical mechanism during the Galaxy's formation epoch. Sizes and properties of these combined populations should place some constraints on the orbits and masses of the progenitor objects from which they came, providing insight into the merging histories of galaxies in general and the Milky Way in particular.Comment: 13 pages, 3 encapsulated postscript figure

    Measurements of muon flux in the Pyh\"asalmi underground laboratory

    Full text link
    The cosmic-ray induced muon flux was measured at several depths in the Pyh\"asalmi mine (Finland) using a plastic scintillator telescope mounted on a trailer. The flux was determined at four different depths underground at 400 m (980 m.w.e), at 660 m (1900 m.w.e), at 990 m (2810 m.w.e) and at 1390 m (3960 m.w.e) with the trailer, and also at the ground surface. In addition, previously measured fluxes from depths of 90 m (210 m.w.e) and 210 m (420 m.w.e) are shown. A relation was obtained for the underground muon flux as a function of the depth. The measured flux follows well the general behaviour and is consistent with results determined in other underground laboratories.Comment: 8 pages, 2 figures. Submitted to Nuclear Instrum. Methods

    The VIRMOS deep imaging survey: III. ESO/WFI deep U-band imaging of the 0226-04 deep field

    Get PDF
    In this paper we describe the U-band imaging of the F02 deep field, one of the fields in the VIRMOS Deep Imaging Survey. The observations were done at the ESO/MPG 2.2m telescope at La Silla (Chile) using the 8k x 8k Wide-Field Imager (WFI). The field is centered at alpha(J2000)=02h 26m 00s and delta(J2000)=-04deg 30' 00", the total covered area is 0.9 deg**2 and the limiting magnitude (50% completeness) is U(AB) ~ 25.4 mag. Reduction steps, including astrometry, photometry and catalogue extraction, are first discussed. The achieved astrometric accuracy (RMS) is ~ 0.2" with reference to the I-band catalog and ~ 0.07" internally (estimated from overlapping sources in different exposures). The photometric accuracy including uncertainties from photometric calibration, is < 0.1 mag. Various tests are then performed as a quality assessment of the data. They include: (i) the color distribution of stars and galaxies in the field, done together with the BVRI data available from the VIMOS survey; (ii) the comparison with previous published results of U-band magnitude-number counts of galaxies.Comment: 10 pages, 13 figures, accepted for publication on Astronomy and Astrophysic
    corecore