19 research outputs found

    Comment on “Evidence that the ProPerDP method is inadequate for protein persulfidation detection due to lack of specificity”

    Get PDF
    The recent report by Fan et al. alleged that the ProPerDP method is inadequate for the detection of protein persulfidation. Upon careful evaluation of their work, we conclude that the claim made by Fan et al. is not supported by their data, rather founded in methodological shortcomings. It is understood that the ProPerDP method generates a mixture of cysteine-containing and non–cysteine-containing peptides. Instead, Fan et al. suggested that the detection of non–cysteine-containing peptides indicates nonspecific alkylation at noncysteine residues. However, if true, then such peptides would not be released by reduction and therefore not appear as products in the reported workflow. Moreover, the authors’ biological assessment of ProPerDP using Escherichia coli mutants was based on assumptions that have not been confirmed by other methods. We conclude that Fan et al. did not rigorously assess the method and that ProPerDP remains a reliable approach for analyses of protein per/polysulfidation

    Simvastatin inhibits the core promoter of the TXNRD1 gene and lowers cellular TrxR activity in HepG2 cells

    No full text
    Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing redox-active enzyme that is thought to be important during carcinogenesis. We have recently shown that treatment with statins, HMGCoA reductase inhibitors, reduces the levels of TrxR1 in liver of both rat and human. The reduced TrxR1 levels were correlated with inhibited hepatocarcinogenesis in a rat model. The aim of the present study was to investigate if statins affect the activity of the human TXNRD1 core promoter, which guides expression of TrxR1, and if the effects by statins on TrxR1 expression in liver could be reproduced in a cellular model system. We found that simvastatin and fluvastatin decreased cellular TrxR activity in cultured human liver-derived HepG2 cells with approximately 40% (p<0.05). Simvastatin, but not fluvastatin or atorvastatin, also reduced the TXNRD1 promoter activity in HepG2 cells by 20% (p<0.01). In line with this result, TrxR1 mRNA levels decreased with about 25% in non-transfected HepG2 cells upon treatment with simvastatin (p<0.01). Concomitant treatment with mevalonate could not reverse these effects of simvastatin, indicating that other mechanisms than HMGCoA reductase inhibition was involved. Also, simvastatin did not inhibit sulforaphane-derived stimulation of the TXNRD1 core promoter activity, suggesting that the inhibition by simvastatin was specific for basal and not Nrf2-activated TrxR1 expression. In contrast to simvastatin, the two other statins tested, atorvastatin or fluvastatin, did not influence the TrxR1 mRNA levels. Thus, our results reveal a simvastatin-specific reduction of cellular TrxR1 levels that at least in part involves direct inhibitory effects on the basal activity of the core promoter guiding TrxR1 expression

    Thioredoxin Reductase Inhibition Elicits Nrf2-Mediated Responses in Clara Cells: Implications for Oxidant-Induced Lung Injury

    Get PDF
    Aims: Pulmonary oxygen toxicity contributes to lung injury in newborn and adult humans. We previously reported that thioredoxin reductase (TrxR1) inhibition with aurothioglucose (ATG) attenuates hyperoxic lung injury in adult mice. The present studies tested the hypothesis that TrxR1 inhibition protects against the effects of hyperoxia via nuclear factor E2-related factor 2 (Nrf2)-dependent mechanisms. Results: Both pharmacologic and siRNA-mediated TrxR1 inhibition induced robust Nrf2 responses in murine-transformed Clara cells (mtCC). While TrxR1 inhibition did not alter the susceptibility of cells to the effects of hyperoxia, glutathione (GSH) depletion after TrxR1 inhibition markedly enhanced the hyperoxic susceptibility of cultured mtCCs. Finally, in vivo data revealed dose-dependent increases in the expression of the Nrf2 target gene NADPH:quinone oxidoreductase 1 (NQO1) in the lungs of ATG-treated adult mice. Innovation: TrxR1 inhibition activates Nrf2-dependent antioxidant responses in mtCCs in vitro and in adult murine lungs in vivo , providing a plausible mechanism for the protective effects of TrxR1 inhibition in vivo . Conclusion: GSH-dependent enzyme systems in mtCCs may be of greater importance for protection against hyperoxic exposure than are TrxR-dependent systems. The induction of Nrf2 activation via TrxR1 inhibition represents a novel therapeutic strategy that attenuates oxidant-mediated lung injury. Similar expression levels of TrxR1 in newborn and adult mouse or human lungs broaden the potential clinical applicability of the present findings to both neonatal and adult oxidant lung injury. Antioxid. Redox Signal. 17, 1407–1416

    Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1

    No full text
    Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth. â–ş Mouse hepatocytes genetically lacking TrxR1 exhibit normal proliferation rates. â–ş Cytosolic variants of TrxR2 do not functionally replace TrxR1 in txnrd1-null livers. â–ş Wild-type hepatocytes lacking GSH proliferate normally. â–ş Hepatocytes lacking both TrxR1 and GSH exhibit severely reduced replication. â–ş S-phase DNA replication in hepatocytes requires either TrxR1 or GSH

    A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

    No full text
    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however, their constitutive metabolic state supported more robust GSH biosynthesis, glutathionylation, and glucuronidation systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. [Display omitted
    corecore