13,708 research outputs found

    Role of Boron p-Electrons and Holes in Superconducting MgB2, and other Diborides: A Fully-Relaxed, Full-Potential Electronic Structure Study

    Full text link
    We present the results of fully-relaxed, full-potential electronic structure calculations for the new superconductor MgB2, and BeB2, NaB2, and AlB2, using density-functional-based methods. Our results described in terms of (i) density of states (DOS), (ii) band-structure, and (iii) the DOS and the charge density around the Fermi energy EF, clearly show the importance of B p-band for superconductivity. In particular, we show that around EF, the charge density in MgB2, BeB2 and NaB2 is planar and is associated with the B plane. For BeB2 and NaB2, our results indicate qualitative similarities but significant quantitative differences in their electronic structure due to different lattice constants a and c.Comment: 4 pages, 4 figures, Submitted to Phys Rev. Lett. on March 6, 2001; resubmission on April 2

    Unusually large polarizabilities and "new" atomic states in Ba

    Full text link
    Electric polarizabilities of four low-J even-parity states and three low-J odd-parity states of atomic barium in the range 35,60035,600 to $36,000\ cmcm^{-1}areinvestigated.Thestatesofinterestareexcited(inanatomicbeam)viaanintermediateoddparitystatewithasequenceoftwolaserpulses.TheoddparitystatescanbeexcitedduetotheStarkinducedmixingwithevenparitystates.Thepolarizabilitiesaremeasuredviadirectspectroscopyonthesecondstagetransition.Severalstateshavetensorandscalarpolarizabilitiesthatexceedthevaluesthatmightbeexpectedfromtheknownenergylevelsofbariumbymorethantwoordersofmagnitude.TwooftheStarkinducedtransitionscannotbeidentifiedfromtheknownenergyspectrumofbarium.Theobservationssuggesttheexistenceofasyetunidentifiedoddparityenergystates,whoseenergiesandangularmomentaaredeterminedinthepresentexperiment.Atentativeidentificationofthesestatesas[Xe] are investigated. The states of interest are excited (in an atomic beam) via an intermediate odd-parity state with a sequence of two laser pulses. The odd-parity states can be excited due to the Stark-induced mixing with even-parity states. The polarizabilities are measured via direct spectroscopy on the second-stage transition. Several states have tensor and scalar polarizabilities that exceed the values that might be expected from the known energy levels of barium by more than two orders of magnitude. Two of the Stark-induced transitions cannot be identified from the known energy spectrum of barium. The observations suggest the existence of as yet unidentified odd-parity energy states, whose energies and angular momenta are determined in the present experiment. A tentative identification of these states as [Xe]6s8p ^3P_{0,2}$ is suggested.Comment: 29 pages, 12 figure

    Conditional operation of a spin qubit

    Full text link
    We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electrostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed

    Asymmetry Function of Interstellar Scintillations of Pulsars

    Get PDF
    A new method for separating intensity variations of a source's radio emission having various physical natures is proposed. The method is based on a joint analysis of the structure function of the intensity variations and the asymmetry function, which is a generalization of the asymmetry coefficient and characterizes the asymmetry of the distribution function of the intensity fluctuations on various scales for the inhomogeneities in the diffractive scintillation pattern. Relationships for the asymmetry function in the cases of a logarithmic normal distribution of the intensity fluctuations and a normal distribution of the field fluctuations are derived. Theoretical relationships and observational data on interstellar scintillations of pulsars (refractive, diffractive, and weak scintillations) are compared. Pulsar scintillations match the behavior expected for a normal distribution of the field fluctuations (diffractive scintillation) or logarithmic normal distribution of the intensity fluctuations (refractive and weak scintillation). Analysis of the asymmetry function is a good test for distinguishing scintillations against the background of variations that have different origins

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3

    Double radiative pion capture on hydrogen and deuterium and the nucleon's pion cloud

    Full text link
    We report measurements of double radiative capture in pionic hydrogen and pionic deuterium. The measurements were performed with the RMC spectrometer at the TRIUMF cyclotron by recording photon pairs from pion stops in liquid hydrogen and deuterium targets. We obtained absolute branching ratios of (3.02±0.27(stat.)±0.31(syst.))×105(3.02 \pm 0.27 (stat.) \pm 0.31 (syst.)) \times 10^{-5} for hydrogen and (1.42±0.120.09(stat.)±0.11(syst.))×105(1.42 \pm ^{0.09}_{0.12} (stat.) \pm 0.11 (syst.)) \times 10^{-5} for deuterium, and relative branching ratios of double radiative capture to single radiative capture of (7.68±0.69(stat.)±0.79(syst.))×105(7.68 \pm 0.69(stat.) \pm 0.79(syst.)) \times 10^{-5} for hydrogen and (5.44±0.460.34(stat.)±0.42(syst.))×105(5.44 \pm^{0.34}_{0.46}(stat.) \pm 0.42(syst.)) \times 10^{-5} for deuterium. For hydrogen, the measured branching ratio and photon energy-angle distributions are in fair agreement with a reaction mechanism involving the annihilation of the incident π\pi^- on the π+\pi^+ cloud of the target proton. For deuterium, the measured branching ratio and energy-angle distributions are qualitatively consistent with simple arguments for the expected role of the spectator neutron. A comparison between our hydrogen and deuterium data and earlier beryllium and carbon data reveals substantial changes in the relative branching ratios and the energy-angle distributions and is in agreement with the expected evolution of the reaction dynamics from an annihilation process in S-state capture to a bremsstrahlung process in P-state capture. Lastly, we comment on the relevance of the double radiative process to the investigation of the charged pion polarizability and the in-medium pion field.Comment: 44 pages, 7 tables, 13 figures, submitted to Phys. Rev.

    Bounds on gravitational wave backgrounds from large distance clock comparisons

    Full text link
    Our spacetime is filled with gravitational wave backgrounds that constitute a fluctuating environment created by astrophysical and cosmological sources. Bounds on these backgrounds are obtained from cosmological and astrophysical data but also by analysis of ranging and Doppler signals from distant spacecraft. We propose here a new way to set bounds on those backgrounds by performing clock comparisons between a ground clock and a remote spacecraft equipped with an ultra-stable clock, rather than only ranging to an onboard transponder. This technique can then be optimized as a function of the signal to be measured and the dominant noise sources, leading to significant improvements on present bounds in a promising frequency range where different theoretical models are competing. We illustrate our approach using the SAGAS project which aims to fly an ultra stable optical clock in the outer solar system.Comment: 10 pages, 8 figures, minor amendment

    Spatial patterns of the tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is characterized neuropathologically by neuronal loss, gliosis, and the presence of tau-immunoreactive neuronal and glial cell inclusions affecting subcortical and some cortical regions. The objectives of this study were to determine (1) the spatial patterns of the tau-immunoreactive pathology, viz., neurofibrillary tangles (NFT), oligodendroglial inclusions (GI), tufted astrocytes (TA), and Alzheimer's disease-type neuritic plaques (NP) in PSP and (2) to investigate the spatial correlations between the histological features. Post-mortem material of cortical and subcortical regions of eight PSP cases was studied. Spatial pattern analysis was applied to the NFT, GI, TA, NP, abnormally enlarged neurons (EN), surviving neurons, and glial cells. NFT, GI, and TA were distributed either at random or in regularly distributed clusters. The EN and NP were mainly randomly distributed. Clustering of NFT and EN was more frequent in the cortex and subcortical regions, respectively. Variations in NFT density were not spatially correlated with the densities of either GI or TA, but were positively correlated with the densities of EN and surviving neurons in some regions. (1) NFT were the most widespread tau-immunoreactive pathology in PSP being distributed randomly in subcortical regions and in regular clusters in cortical regions, (2) GI and TA were more localized and exhibited a regular pattern of clustering in subcortical regions, and (3) neuronal and glial cell pathologies were not spatially correlated. © 2012 Springer-Verlag

    Contrasting responses of lizard occurrences to burrowing by a critically endangered seabird

    Get PDF
    Abstract Seabirds are considered ecosystem engineers, because they facilitate ecosystem functioning (e.g., nutrient cycling), crucial for other marine and terrestrial species, including reptiles. However, studies of seabird-reptile interactions are limited. Here, we assessed the influence of the ‘Critically Endangered’ Whenua Hou Diving Petrel (Pelecanoides whenuahouensis) on the occurrence of two threatened skinks, Stewart Island green skink (Oligosoma aff. chloronoton) and southern grass skink (O. aff. polychroma). We surveyed skinks for 26 consecutive days at 51 sites with and 48 sites without Diving Petrel burrows in the dunes on Codfish Island (Whenua Hou), New Zealand. We used occupancy modelling to assess the influence of burrows on the occurrence of skinks, while accounting for other factors affecting occupancy (Ψ) and detection probabilities (p). Diving Petrel burrows had a contrasting effect on the occurrence of skinks. On average, Ψ̂ of Stewart Island green skinks was 114% higher at sites with burrows compared to sites without, while Ψ̂ of southern grass skinks was only 2% higher. Occurrence of both skinks was negatively influenced by the presence of the other skink species. On average p̂ were low: 0.013 and 0.038 for Stewart Island green and southern grass skinks, respectively. Stewart Island green skinks appear attracted to burrows, which might facilitate thermoregulation (i.e., shelter from temperature extremes). The larger Stewart Island green skinks may subsequently exclude the smaller southern grass skinks at burrows, causing the contrasting relationships. We suggest that these interspecific interactions should be considered when implementing conservation management, e.g., through the order of species reintroductions
    corecore