The abelian sandpile models feature a finite abelian group G generated by the
operators corresponding to particle addition at various sites. We study the
canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X
Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G,
and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of
toppling matrix. We construct scalar functions, linear in height variables of
the pile, that are invariant toppling at any site. These invariants provide
convenient coordinates to label the recurrent configurations of the sandpile.
For an L X L square lattice, we show that g = L. In this case, we observe that
the system has nontrivial symmetries coming from the action of the cyclotomic
Galois group of the (2L+2)th roots of unity which operates on the set of
eigenvalues of the toppling matrix. These eigenvalues are algebraic integers,
whose product is the order |G|. With the help of this Galois group, we obtain
an explicit factorizaration of |G|. We also use it to define other simpler,
though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3