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Algebraic Aspects of Abelian Sandpile Models

D. Dhar1, P. Ruelle2,3, S. Sen4 and D.-N. Verma1

ABSTRACT

The abelian sandpile models feature a finite abelian group G generated by the

operators corresponding to particle addition at various sites. We study the canonical

decomposition of G as a product of cyclic groups G = Zd1
×Zd2

×Zd3
· · ·×Zdg

where g

is the least number of generators of G, and di is a multiple of di+1. The structure of G

is determined in terms of the toppling matrix ∆. We construct scalar functions, linear

in height variables of the pile, that are invariant under toppling at any site. These

invariants provide convenient coordinates to label the recurrent configurations of the

sandpile. For an L × L square lattice, we show that g = L. In this case, we observe

that the system has nontrivial symmetries, transcending the obvious symmetries of

the square, viz. those coming from the action of the cyclotomic Galois group GalL of

the 2(L + 1)–th roots of unity (which operates on the set of eigenvalues of ∆). These

eigenvalues are algebraic integers, whose product is the order |G|. With the help of

GalL we are able to group the eigenvalues into certain subsets whose products are

separately integers, and thus obtain an explicit factorization of |G|. We also use GalL

to define other simpler, though under-complete, sets of toppling invariants.
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1. Introduction

The concept of self-organized criticality was proposed by Bak, Tang and Wiesenfeld

in 1987, and has given rise to growing interest in the study of self-organizing systems.

Bak et al argued that in many natural phenomena, the dissipative dynamics of the

system is such that it drives the system to a critical state, thereby leading to ubiquitous

power law behaviors [1,2]. This mechanism has been invoked to understand the power–

laws observed in turbulent fluids, earthquakes, distribution of visible matter in the

universe, solar flares and surface roughening of growing interfaces [3-5].

Sandpile automata are among the simplest theoretical models which show self–

organized criticality. A specially nice subclass consists of the so–called abelian sandpile

models (ASM’s) [6]. There have been many numerical as well as analytical studies of

the ASM. The case when there is a preferred direction of particle transfer turns out

to be equivalent to the voter model, and all the critical exponents can be determined

in all dimensions [7]. When there is no preferred direction, the model turns out to be

related to the q → 0 limiting case of the Potts model [8]. The problem has been solved

exactly in the mean field limit [9-11]. In two and three dimensions, only some of the

critical exponents of the problem are known analytically [6,8,12].

Most of these papers have been concerned with the critical properties of the ASM

in the thermodynamic limit of large system sizes. In this paper, our interest is rather

in the properties of the finite automata. There have been only a handful of papers

addressing these so far (and mainly in two dimensions). Creutz’ paper [13] exhibits

very interesting examples of geometrical patterns displayed by a special configuration

(the so–called identity configuration) of the ASM on a square lattice. Liu et al [14]

have studied the patterns obtained by relaxing some simple unstable configurations.

Wiesenfeld et al [15] have studied the periods of deterministic ASM, again on a square

lattice. These studies have been extended by Markosova and Markos [16] to lattices

of size up to 19. This paper was inspired partly by the ‘experimental’ results of these

authors. We will concentrate on properties such as the structures of the abelian group

and of the space of recurrent configurations.

The plan of this paper is as follows. In section 2, we give the definition of general

ASM, and review their basic properties. In section 3, we construct, for a general ASM,

a set of functions, defined on the space of recurrent configurations, which are invariant
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under topplings, and which can be used to label those configurations. With these

functions, we show how to determine the structure of the abelian group of the ASM

in terms of the normal form decomposition of its toppling matrix. In section 4, we

consider the problem of computing the rank of the abelian group when the ASM is

defined on an L1×L2 rectangular portion of the square lattice, and show that the rank

equals L on an L × L square. In section 5, we recapitulate briefly the results from

general Galois theory needed by us, and use them to study the Galois group of the

characteristic polynomial of the toppling matrix, and construct, in section 6, another

set of algebraic functions, invariant under topplings, thereby extracting information

about the abelian group from Galois theory. This information is incomplete and, we

show that the method does not give the full structure of the group in general. In

section 7, we remark on two other properties of the ASM on a square lattice. Firstly,

we derive a sharper upper bound on the time period of the deterministic ASM studied

in [15]. The second one is an interesting connection between the structure of identity

configurations on 2L × 2L and (2L + 1) × (2L + 1) lattices. Some technical material

involving detailed calculations is given in appendices A and B, while in appendix C we

display some identity configurations for some small square lattices. In appendix D, we

show how the toppling invariants discussed by Lee et al [17] are a special case of the

invariants discussed in this paper.

2. Preliminaries and notation

The general ASM is defined on a set of N sites, labelled say by integers 1 to N .

Each site i is assigned an integer variable zi, called the height of the sandpile at site i.

The time evolution of the sandpile is defined in terms of the following two processes:

(1) Addition of particles: We choose a site at random, and increase its height by 1,

while the heights at other sites remain unchanged. The probability of choosing

the kth site is denoted by pk. For simplicity we take all pk’s nonzero. [This

condition is needed to ensure the uniqueness of the steady state.]

(2) Relaxation: If the height at some site j equals or exceeds a prespecified value

zcrit(j), it is said to be unstable and topples, loosing some grains of sand which
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either fall on other ‘neighbouring’ sites (whose height increases as a consequence),

or drop out of the system. The updating of heights is specified in terms of an

N × N integer matrix ∆, called the toppling matrix and satisfying ∆ii ≥ 0 and

∆ij ≤ 0 for i 6= j. If there is a toppling at some site j, all heights {zi} are

updated according to the rule

If zj ≥ zcrit(j), then zi → zi − ∆ij for all i. (2.1)

We may assume that

zcrit(j) = ∆jj , (2.2)

so that the values of zj in a stable configuration are between 0 and ∆jj − 1.

A toppling at one site may make other sites unstable. A sequence of topplings

caused by adding a single particle is called an avalanche. When all the unstable sites

have toppled, we are left with a new stable configuration. This defines a single step of

time evolution. At the next time, a new particle is added at a random site, and the

system is allowed to relax, and so on.

It is convenient to define operators ak, k = 1 to N , corresponding to the process of

adding a particle at site k, and allowing the system to relax. These operators ak map

stable configurations into stable configurations.

A general analysis of abelian sandpile models was carried out in [6]. It was

shown that the operators {ak} commute with each others. This allows a simple

characterization of the critical steady state: Only a small subset of all stable

configurations occur with non–zero probability in the steady state. These are called

recurrent configurations. Their number is equal to Det ∆, and in the steady state they

occur with equal probability. The ak’s map the space R of recurrent configurations

onto itself, and are invertible on R.

Let G be the abelian group generated by the operators {ai}, i = 1 to N . This is a

finite group as these operators satisfy the closure relations [6]

N
∏

i=1

a
∆ij

i = I, for all j. (2.3)

The order of G, denoted by |G|, is equal to the number of recurrent configurations.

This is a consequence of the fact that if C and C ′ are any two recurrent configurations,
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then there is an element g ∈ G such that C ′ = gC. We thus have

|G| = |R| = Det∆. (2.4)

3. Toppling invariants and the group structure for general ASM

The space of all configurations {zi} (with non–negative heights zi) constitutes a

commutative semigroup over the given set of N sites, with the operation given by

sitewise addition of heights followed by relaxation if necessary. One can define an

equivalence relation on this semigroup by declaring two configurations {zi} and {z′i}
equivalent (under toppling) if and only if there exist N integers nj such that

z′i = zi −
∑

j

∆ij nj , for all i. (3.1)

Each equivalence class contains one and only one recurrent configuration. Indeed to

any configuration {zi}, one can associate a recurrent configuration C by letting

C[zi] =
∏

i

azi

i C∗, (3.2)

where C∗ is any fixed recurrent configuration. Then if {zi} and {z′i} are related as in

(3.1), one easily checks that C[zi] = C[z′i] on account of the relations (2.3). (Note that

with the definition (3.1), two stable configurations may be equivalent under toppling.)

Toppling invariants are scalar functions defined on the space of all configurations of

the sandpile, such that they take the same value for any two configurations which are

equivalent under toppling. Toppling invariants which are linear in the height variables,

and which are conserved modulo various integers were first introduced by Lee and

Tzeng [17] in the context of specific deterministic one–dimensional ASM. Their results

will be shown to be particular cases of our general construction (see Appendix D).
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Given the toppling matrix ∆, we define N rational functions Qi (i = 1 to N) by

setting

Qi({zj}) =
∑

j

∆−1
ij zj mod 1. (3.3)

It is straightforward to prove that the functions Qi are toppling invariants. Indeed,

under toppling at site k, the configuration C ≡ {zj} changes to C ′ ≡ {z′j = zj −∆jk},
and from the linearity of the functions Qi in the height variables, we have

Qi(C
′) = Qi(C) −

∑

j

∆−1
ij ∆jk = Qi(C) mod 1. (3.4)

The functions Qi take rational values, but they are easily made integer–valued upon

multiplication by some adequate integer. Being toppling invariants, the functions Qi

can be used to label the recurrent configurations, and thus the space R can be replaced

by the set of N–uples (Q1, Q2, . . . , QN ). However, the labelling by the Qi’s is generally

overcomplete, they not being all independent. A simple example will readily establish

that.

Throughout this paper, we shall consider in detail the special case of the ASM

defined on an L1 × L2 rectangular portion of a two–dimensional square lattice. We

choose the toppling matrix to be the discrete Laplacian, whose diagonal entries are

given by ∆ii = 4, and the off-diagonal entries ∆ij = −1 or 0 according to whether

the sites i and j are nearest neighbours or not. Note that this implies open boundary

conditions on all four boundaries of the rectangle, and thus any toppling there involves

a loss of sand.

To be specific, consider the case L1 = L2 = 2, with the configurations specified as
(

z1 z2

z3 z4

)

. In this case ∆ is a 4 × 4 matrix of determinant 192, and we find

∆ =













4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4













and ∆−1 =
1

24













7 2 2 1

2 7 1 2

2 1 7 2

1 2 2 7













. (3.5)

The definition (3.3) yields the four invariants

Q1 =
1

24
(7z1 + 2z2 + 2z3 + z4) mod 1, (3.6a)
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Q2 =
1

24
(2z1 + 7z2 + z3 + 2z4) mod 1, (3.6b)

Q3 =
1

24
(2z1 + z2 + 7z3 + 2z4) mod 1, (3.6c)

Q4 =
1

24
(z1 + 2z2 + 2z3 + 7z4) mod 1. (3.6d)

They satisfy three linear relations

Q1 + Q2 = 0 mod 1/8, (3.7a)

Q3 = 4Q1 − Q2 mod 1, (3.7b)

Q4 = −Q1 + 4Q2 mod 1, (3.7c)

from which one sees that only two independent invariants remain, which we choose

integer–valued for convenience

I1 ≡ 24Q1 = 7z1 + 2z2 + 2z3 + z4 mod 24, (3.8a)

I2 ≡ 8(Q1 + Q2) = 3z1 + 3z2 + z3 + z4 mod 8. (3.8b)

These two invariants provide a complete labelling for the space of recurrent

configurations, of cardinality 192.

As this very simple example already shows, for an arbitrary N × N matrix ∆, we

construct N toppling invariants Qi, but they are generally not independent. It thus

seems desirable to isolate a minimal set of independent invariants, as we did above to

obtain the mininal set given by (I1, I2). We now show how this can be done for an

arbitrary ASM using the classical theory of Smith normal form for integer matrices.

In current mathematics literature, as in Jacobson [18], this is often discussed for

matrices with entries in a principal ideal domain (the ring of integers being a prime

example). From Theorems 3.8 and 3.9 of Jacobson, any nonsingular N × N matrix ∆

can be written in the form

∆ = ADB, (3.9)

where A and B are N ×N integer matrices with determinants ±1, and D is a diagonal

matrix

Dij = diδij (3.10)

such that
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1. di is a multiple of di+1 for all i = 1 to N − 1, and

2. di = ei−1/ei , where ei stands for the greatest common divisor of the determinants

of all the (N − i) × (N − i) submatrices of ∆ (set eN = 1).

Thus the matrix D is uniquely determined by ∆, but the matrices A and B are far

from unique. The integers di are are called the elementary divisors of ∆. An efficient

algorithm to compute them can be found in Cohen [19].

In terms of the decomposition (3.9), we define the set of scalar functions Ii(C) by

Ii(C) =
∑

j

(A−1)ijzj mod di. (3.11)

Due to the unimodularity of A, these functions are integer–valued. As argued for the

Q’s in Eq. (3.4), we see using (3.9) that Ii(C) so defined are invariant under the

toppling of any site. Clearly, only those invariants Ii with di 6= 1 are nontrivial. Note

that they are written in terms of A, and hence not unique. It will be obvious from the

discussion below that the set of non–trivial Ii is always minimal and complete.

As suggested by the notation used in the above example, this second set {Ii}
is a minimal set of invariants chosen from the overcomplete set {Qi}. The Smith

decomposition precisely shows how to combine the overcomplete invariants Qi so as to

obtain a complete set. Indeed, it is easily checked that the Ii’s can be written in terms

of the Qi’s as

Ii =
∑

j

di BijQj mod di. (3.12)

For instance, in the above 2× 2 example, one finds the following Smith decomposition

(written in the form A−1∆ = DB)













7 2 2 1

3 3 1 1

−1 0 0 0

−2 0 −1 0













∆ = diag (24, 8, 1, 1)













1 0 0 0

1 1 0 0

−4 1 1 0

−7 2 −2 1













. (3.13)

From the first two rows of A−1 and (3.11), one recovers the two invariants I1, I2 of

(3.8). From the matrix B and (3.12), one finds the relations (3.8) between (I1, I2)
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and (Q1, Q2), while the trivial character of I3, I4 leads to the linear relations (3.7b–c)

among the Q’s.

Let us now show that the set {Ii} not only forms a complete set of toppling

invariants, but that they also determine the structure of the abelian group G.

Let g be the number of di > 1. With each recurrent configuration of the ASM, we

associate a g–uple (I1, I2, ....Ig), where 0 ≤ Ii < di. The total number of distinct g–

uples is
∏g

i=1 di = |G| (since A and B in the Smith decomposition of ∆ are unimodular).

We first show that this mapping from the set of recurrent configurations to g–uples

is one–to–one. Let us define operators ei by the equation

ei =

N
∏

j=1

a
Aji

j , 1 ≤ i ≤ g. (3.14)

Acting on a fixed recurrent configuration C∗ = {zj}, ei yields a new recurrent

configuration, equivalent under toppling to the configuration {zj + Aji}. If the g–

uple corresponding to C∗ is (I∗1 , I∗2 , . . . , I∗g ), it is easy to see from (3.11) that eiC
∗ gives

a configuration whose toppling invariants are Ik = I∗k + δik. By operating with these

operators {ei} sufficiently many times on C∗, all |G| values for the g–uple (I1, I2, . . . , Ig)

are obtainable. Thus, there is at least one recurrent configuration corresponding to any

g–uple (I1, I2, . . . , Ig). As the total number of recurrent configurations exactly equals

the total number of g–uples, we see that there is a one–to–one correspondence between

the g–uples (I1, I2, . . . , Ig) and the recurrent configurations of the ASM.

To express the operators aj in terms of ei, we need to invert the transformation

(3.14). This is easily seen to be

aj =

g
∏

i=1

e
(A−1)ij

i , 1 ≤ j ≤ N. (3.15)

Thus the operators ei generate the whole of G. Since ei acting on a configuration

increases Ii by 1, leaving the other invariants unchanged, and since Ii is only defined

modulo di, we see that

ei
di = I, for i = 1 to g. (3.16)

Note that the definition (3.14) for ei makes sense for i between g+1 and N , and implies

relations among the aj operators (ei = I from (3.16)).
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This shows that G has the canonical decomposition as a product of cyclic groups

G = Zd1
× Zd2

× . . . × Zdg
, (3.17)

with the di’s defined in (3.10). We thus have shown that the generators and the group

structure of G for an arbitrary ASM can be entirely determined from its toppling

matrix ∆, through its normal from decomposition (3.9).

The invariants {Ii} also provide a simple additive representation of the group G.

As mentioned at the beginning of this section, one can define a binary operation of

“addition” (denoted by ⊕) on the space R of recurrent configurations by adding heights

sitewise, and then allowing the resultant configuration to relax. From the linearity of

the Ii’s in the height variables, and their invariance under toppling, it is clear that

under this addition of configurations, the Ii also simply add, i.e. for any recurrent

configurations C1 and C2, one has

Ii(C1 ⊕ C2) = Ii(C1) + Ii(C2) mod di. (3.18)

The Ii’s provide a complete labelling of R. There is a unique recurrent configuration,

denoted by Cid, for which all Ii(Cid) are zero. Also, each recurrent C has a unique

inverse −C, also recurrent, and determined by Ii(−C) = −Ii(C) mod di. Therefore

the addition ⊕ is a group law on R, with identity given by Cid. A simple recursive

algorithm to compute Cid has been given by Creutz [13].

There exists a one–to–one correspondence between the recurrent configurations of

ASM, and the elements of the group G: we associate with the group element g ∈ G,

the recurrent configuration gCid. It is then easy to see from (3.18) that for all g, g′ ∈ G

gCid ⊕ g′Cid = (gg′)Cid . (3.19)

Thus the recurrent configurations with the operation ⊕ form a group which is

isomorphic to the multiplicative group G, a result first proved in [13].

The invariants {Ii} provide a simple labelling of all the recurrent configurations.

Since a recurrent configuration can also be uniquely specified by the height variables
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{zi}, the existence of forbidden subconfigurations in ASM’s implies that these heights

satisfy many inequality constraints. [Certain patterns cannot appear inside any

recurrent configuration, and hence are called forbidden subconfigurations [6]; for

instance, two neighbouring sites can never both have zero heights.]

4. The rank of G for a rectangular lattice

For a general matrix ∆, it is difficult to say much more about the group structure

of G. In the rest of this paper, unless otherwise specified, we shall consider the special

case when ∆ is the toppling matrix corresponding to a finite L1 × L2 rectangle of the

(two–dimensional) square lattice. Here it is more convenient to label the sites not by

a single index i going from 1 to N = L1L2, but by two Cartesian coordinates (x, y),

where 1 ≤ x ≤ L1 and 1 ≤ y ≤ L2. The toppling matrix is the discrete Laplacian,

given by ∆(x, y; x, y) = 4, ∆(x, y; x′, y′) = −1 if the sites (x, y) and (x′, y′) are nearest

neighbours (i.e. |x−x′|+ |y− y′| = 1), and zero otherwise. Without loss of generality,

we can assume that L1 ≥ L2.

The relations satisfied by the particle addition operators a(x, y) can be written in

the form

a(x + 1, y) = a4(x, y) a−1(x, y + 1) a−1(x, y − 1) a−1(x − 1, y) , (4.1)

where we adopt the convention that

a(x, 0) = a(x, L2 + 1) = a(0, y) = a(L1 + 1, y) = I, for all x, y. (4.2)

The Eqns (4.1) can be recursively solved to express any operator a(x, y) as a product of

powers of a(1, y). Therefore the group G can be generated by the L2 operators a(1, y).

Denoting the rank of G (minimal number of generators) by g, this implies that

g ≤ L2 . (4.3)

In the special case of the linear chain, L2 = 1, we see that g = 1, and thus G is cyclic.
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From (4.1), a(L1 +1, y) can also be expressed as a product of powers of a(1, y), say

a(L1 + 1, y) =
∏

y′

a(1, y′)nyy′ , (4.4)

where the nyy′ are integers which depend on L1 and L2, and which can be explicitly

determined by solving the linear recurrence relation (4.1). The condition a(L1 +1, y) =

I then leads to the closure relations

L2
∏

y′=1

a(1, y′)nyy′ = I, for all 1 ≤ y ≤ L2. (4.5)

The Eqns (4.5) give a presentation of G, the structure of which can be determined from

the normal form decomposition of the L2 ×L2 matrix nyy′. This is considerably easier

to handle than the normal form decomposition of the much larger matrix ∆ needed for

an arbitrary ASM.

Even though this is a real computational improvement, the actual calculation, for

arbitrary L1, of the rank of G is nontrivial. Even in the simplest case L2 = 2, it

depends in a complicated way on the number–theoretic properties of L1. Details of

this case are given in Appendix A.

As to the square lattice where L1 = L2 = L, using the above algorithm we find the

following structures of G for the first values of L

L = 2 : G = Z24 × Z8, (4.6a)

L = 3 : G = Z224 × Z112 × Z4, (4.6b)

L = 4 : G = Z6600 × Z1320 × Z8 × Z8, (4.6c)

L = 5 : G = Z102960 × Z102960 × Z48 × Z16 × Z4. (4.6d)

This suggests, and it is in fact not difficult to prove, that for an L × L square

g = L, for L1 = L2 = L. (4.7)

The idea of the proof of (4.7) is to use the fact that in this case, the matrix ∆ has

exactly L linearly independent eigenvectors of eigenvalue 4, of which all components
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can be chosen to be integers. We use them to construct L independent operators (none

can be expressed as product of powers of the others) Uk, 0 ≤ k ≤ L − 1, such that

U4
k = I. (4.8)

This implies that the number of generators is at least equal to L. Combined with the

inequality (4.3), we get the result.

To write the operators Uk explicitly, we consider the eigenvectors nk(x, y) of ∆ of

eigenvalue 4
∑

(x′,y′)

∆(x, y; x′, y′)nk(x′, y′) = 4nk(x, y). (4.9)

There are L independent solutions to Eq. (4.9), and a possible choice is to set

(1 ≤ x, y ≤ L, 0 ≤ k ≤ L − 1)

nk(x, y) = (−1)x
[

δ(y−x−k)−δ(y+x−k)−δ(x+y−2L−2+k)+δ(y−x+k)
]

. (4.10)

It is then easy to verify by using (4.9) and the relations (2.3) satisfied by the a(x, y),

that the operators Uk defined by

Uk =
∏

x,y

a(x, y)nk(x,y), (4.11)

all satisfy U4
k = I. Note that a strong form of independence of the eigenvectors nk(x, y)

must hold for the operators Uk to be multiplicatively independent: the eigenvectors

must be linearly independent modulo the lattice {∑x′,y′ mx′,y′∆(x, y; x′, y′) :

mx′,y′ integers}, on account of the relations (2.3). The vectors (4.10) are easily seen to

satisfy this condition. This completes the proof.

When L1 6= L2, the above construction is easily generalized. If f = gcd[(L1 +

1), (L2 + 1)], it is easy to check that the matrix ∆ has f − 1 independent eigenvectors

of eigenvalue 4. Thus we obtain in this case that the rank gL1×L2
satisfies the two

inequalities

f − 1 ≤ gL1×L2
≤ L2 . (4.12)

That the eigenvectors of integer eigenvalue play a particular role in the above proof

should be clear. An arbitrary eigenvalue is generically an algebraic number, and the
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corresponding eigenvector has components which are also algebraic numbers, so that

(4.11) becomes meaningless. However we show in the next two sections that one can

construct toppling invariants from the spectrum of ∆, which yield the proper setting

to generalize the above idea to any eigenvalue. The corresponding construction is

applicable to any ASM which has a diagonalizable toppling matrix.

5. A reminder of Galois theory.

In this section, we recall the basic ideas of Galois theory, which can be used in

any ASM, whatever its type. For illustrating the technique, we shall consider the

familiar ASM defined on an L×L square lattice. The toppling matrix ∆ is the discrete

Laplacian, and its eigenvalues are easily determined and read

λm,n = 4 − 2 cos
2πm

N
− 2 cos

2πn

N
, 1 ≤ m, n ≤ L, (5.1)

where we have defined

N = 2(L + 1). (5.2)

The order of the group G is given by

|G| =

L
∏

m=1

L
∏

n=1

λm,n. (5.3)

We define the transformations

σs(λm,n) = λm′,n′ , s coprime with N, (5.4)

where m′, n′ are integers, 1 ≤ m′, n′ ≤ L, such that cos(2πm′/N) = cos(2πsm/N)

and cos(2πn′/N) = cos(2πsn/N). We see that these transformations act on the set of

eigenvalues by permutation. Moreover, they form a group, and as

σs ◦ σs′ = σss′ = σs′ ◦ σs , (5.5)

the group is commutative and isomorphic to the multiplication modulo N of the

numbers coprime with N . Finally from the explicit expression of λm,n, the actions
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of σs and σ−s are the same. Thus the group of all σs is isomorphic to the group Z∗
N

of invertible integers modulo N (those which are coprime with N) quotiented by the

subgroup {+1,−1}

GalL = {σs : 1 ≤ s ≤ L and s coprime with N} ≃ Z∗
N/{±1}, (5.6)

and is of order 1
2ϕ(N). We call the group (5.6) the Galois group of this ASM.

It is instructive to group the set of eigenvalues λm,n into orbits under the Galois

group (5.6). As an example, let us take L = 3 or N = 8. The Galois group consists

of the two transformations s = 1 (the identity transformation) and s = 3. We find

σ3(λ1,1) = λ3,3 and σ3(λ3,3) = λ1,1, so that {λ1,1, λ3,3} form an orbit under the Galois

group. Computing the product of these two eigenvalues, we find λ1,1λ3,3 = 8. Likewise

σ3(λ2,2) = λ2,2 shows that λ2,2 = 4 is an orbit on its own. (Note that because of the

existence of some degeneracies in the eigenvalues, finding the orbit of λm,n is not merely

finding the orbit of (m, n) under a diagonal multiplication by all s. In the example at

hand, to say that {λ1,1, λ3,3} is the orbit of λ1,1 supposes that we have checked that

the two eigenvalues are different complex numbers.) Doing the same calculation for

the other eigenvalues, we can rearrange the product (5.3) giving the order of G as a

product over the orbits (6 in this case) to find

L = 3 : |G| = [λ11λ33] [λ22] [λ12λ32] [λ21λ23] [λ13] [λ31]

= 8 · 4 · 14 · 14 · 4 · 4 = 100 352.
(5.7)

We can do the same rearrangement for any value of L, writing |G| as a product over

orbits under the Galois group,

|G| =
∏

orbits O

[

∏

λm,n∈O
λm,n

]

, (5.8)

and then each sub–product in square brackets is an integer. This follows from the fact

that each square bracket is by construction invariant under the whole of the Galois

group, in which case the Galois theorem then states it must be a rational number.

Because of the special form of the numbers λm,n (they are algebraic integers), all

square brackets must even be integers. Not only is each square bracket equal to an
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integer, but the Galois theorem asserts that none of them can be further split: the

decomposition (5.8) is the maximal factorization of |G| as a product of integers with

the property that each integer is the product of a certain number of eigenvalues.

Let us now put the above considerations in a more general perspective. A clear

account of Galois theory can be found, for example, in [20].

Let P (x) be a finite degree polynomial with integer coefficients, and let us define

the algebraic extension F [P ] by adjoining to the field of rational numbers Q all the

roots of P (x). (This kind of algebraic extensions are technically known as separable

normal extensions.) Thus, F [P ] is constructed in two steps: first we form the set of

all rational linear combinations of the roots of P , and second, we promote this set to

a field by adding whatever is needed to make it closed under multiplication. Hence

F [P ] contains all roots of P and all products of roots, but it is always possible to

choose a finite number of base elements (linearly independent over Q) of which F [P ] is

the linear Q–span. The number of base elements is called the degree of the extension

F [P ], which has in general no relation with the degree of P . For instance the degree

of F [x4 − 2] is 8, while that of F [x4 − 1] is 2.

Clearly, Q is a subfield of F [P ], and it is thus a well–defined problem to look for

automorphisms of F [P ] which leave invariant every element of Q ⊂ F [P ]. The group

of all such automorphisms is called the Galois group of F [P ] with respect to Q, and

noted Gal(F [P ]/Q). The effect of the Galois group on F [P ] is to permute the roots of

P , although not all permutations are allowed since they must be automorphisms. An

equivalent definition of Gal(F [P ]/Q) is the set of permutations of the roots of P (x)

which preserve all algebraic relations among them. It can be shown that the order of

the Galois group is equal to the degree of F [P ]. We can now formulate the Galois

Correspondence Theorem: there is a one–to–one correspondence between the subfields

of F [P ] and the subgroups of Gal(F [P ]/Q). The bijection goes by associating a subfield

M ⊂ F [P ] with the maximal subgroup H ⊂ Gal(F [P ]/Q) which leaves the elements

of M invariant. Hence the bigger H , the smaller M . For instance M = Q is associated

with H = Gal(F [P ]/Q) by definition of the Galois group (hence an element of F [P ]

is in Q iff it is invariant under the whole Galois group), and M = F [P ] is associated

with the trivial subgroup H = {1}.

Before closing this digression, we make a final comment about algebraic numbers
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and algebraic integers. All the elements of an algebraic extension of Q are algebraic

numbers, which means that they all satisfy polynomial equations with integer

coefficients. However, some of them may as well satisfy a polynomial equation with

integer coefficients and with coefficient of the highest power equal to 1. These elements

are distinguished in the extension and are called algebraic integers. For instance, in

F [x2 − 2] = Q[
√

2], the number
√

2 is an algebraic integer whereas 1/
√

2 is not. Also

the eigenvalues of a matrix with integer entries are all algebraic integers. While the

extension itself is a field, the subset of its algebraic integers is only a ring. In Q, this

amounts to the usual distinction between the rationals and the integers. An immediate

consequence is that an algebraic integer of F [P ] which is invariant under the whole

Galois group is actually an algebraic integer of Q, i.e. an integer of Z.

Let us now see how these general ideas work if we take the extension F [det(x−∆)]

obtained by adjoining to Q the roots of the characteristic polynomial of the toppling

matrix of an ASM. We choose the ASM defined in section 3 for an L× L lattice, with

∆ the discrete Laplacian, but clearly the same analysis can be done in any model.

We thus consider the algebraic extension FL ≡ F [det(x−∆L)] obtained by adding

to Q the roots λm,n given in (5.1),

λm,n = 4 − 2 cos
2πm

N
− 2 cos

2πn

N
, 1 ≤ m, n ≤ L. (5.9)

Since FL contains all rational combinations of the λm,n, it contains cos 2πm
N for all

1 ≤ m ≤ L since

cos
2πm

N
= 2 − 1

2L

L
∑

n=1

λm,n. (5.10)

We also see from

cos
2πm

N
· cos

2πn

N
=

1

2
cos

2π(m + n)

N
+

1

2
cos

2π(m − n)

N
, (5.11)

that any product of λm,n can be expressed as a rational combination of 1 and the

numbers (5.10), which shows that any element of FL can be written as a rational

combination of 1, cos 2π
N , cos 4π

N , . . ., cos 2πL
N . However, this writing is not unique as
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these L + 1 cosines are not independent over Q, but satisfy

p−1
∑

i=0

cos
2π(apk + bN/pk + iN/p)

N
= 0, 0 ≤ a ≤ N

pk
− 1, 0 ≤ b ≤ pk−1 − 1, (5.12)

for every prime power pk entering the prime decomposition of N . Using these relations,

it can be shown that only 1
2ϕ(N) among the L + 1 cosines are independent over Q.

Thus the extension FL, usually denoted by Q(cos 2π
N ), has degree 1

2ϕ(N). A basis of

FL over Q can be taken to be {cos 2πm
N : 0 ≤ m ≤ 1

2ϕ(N) − 1}.

To find the Galois group of FL, we first note the following identities

cos
2πm

N
= Tm(cos

2π

N
), (5.13)

where Tm is the m–th Chebyshev polynomial of the first kind. Equation (5.13) shows

that the Galois transformation of cos 2πm
N , m ≥ 2, is determined by that of cos 2π

N .

The next step is to notice that, since the Galois group acts on the roots λm,n by

permutations, the Galois transformations of cos 2π
N must be in the set of cos 2πs

N ,

1 ≤ s ≤ L. Hence suppose that σs(cos 2π
N ) = cos 2πs

N is a Galois transformation for s

between 1 and L. Being a group element, σs must have an inverse which we denote by

σs′ = σ−1
s . It satisfies σs′(cos 2πs

N ) = cos 2πss′

N = cos 2π
N , hence ss′ = ±1 mod N . This

is impossible if s and N have a common factor, while if s is coprime with N , there is

a unique s′ between 1 and L satisfying either s′ = s−1 mod N or s′ = −s−1 mod N .

Thus the Galois group contains at least the transformations σs for s between 1 and L

and coprime with N . The number of such s is equal to 1
2ϕ(N), and since this must

also be the order of the Galois group (equal to the degree of FL), one recovers the

symmetry group of (5.6)

GalL = {σs : 1 ≤ s ≤ L and (s, N) = 1}. (5.14)

We have completely identified the extension FL and determined its Galois group.

The last point concerns the ring of algebraic integers of FL. This is a far more

difficult question, and we just quote the result: the algebraic number w = a0 +
∑

1
2ϕ(N)−1

m=1 2am cos 2πmJ
N of FL is an algebraic integer if and only if all coefficients am

are integers of Z. This ring of integers is usually denoted by Z(cos 2π
N ). In particular,

as noted above, the eigenvalues λm,n are all algebraic integers.
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Looking back at the decomposition (5.8) of |G| as a product of orbits of eigenvalues

under the Galois group, all the properties we mentioned easily follow from the above

facts. The product of eigenvalues belonging to an orbit is by definition Galois invariant

and thus must be an rational number. Since the eigenvalues are algebraic integers, this

rational number must in fact be an integer. Finally the decomposition is maximal by

definition of the orbits as the smallest subsets invariant under the Galois group.

Similarly to the decomposition of G = Det ∆, we may consider the factorization of

the characteristic polynomial of ∆ in factors which are all invariant under the Galois

group

PL(x) =

L
∏

m,n=1

(x − λm,n) =
∏

orbits O

[

∏

λm,n∈O
(x − λm,n)

]

. (5.15)

In this case, the Galois theory states that the polynomial within each square

bracket, call it PO(x), has integer coefficients, and that the decomposition (5.15) is

maximal, namely one cannot perform a further splitting into polynomials with rational

coefficients (or in other words, all PO(x) are irreducible over the field of rationals).

Examples of decomposition (5.15) for small values of L are

P2(4 − x) = x2(x2 − 4) , (5.16a)

P3(4 − x) = −x3(x2 − 2)2(x2 − 8) , (5.16b)

P4(4 − x) = x4(x − 1)2(x + 1)2(x2 − 5)2(x2 − 2x − 4)(x2 + 2x − 4) , (5.16c)

...

P7(4 − x) = −x7(x2 − 2)2(x2 − 8)(x4 − 4x2 + 2)2(x4 − 8x2 + 8)2

(x4 − 16x2 + 32)(x4 − 8x2 − 8x − 2)2(x4 − 8x2 + 8x − 2)2. (5.16d)

The number F (L) of factors in the decompositions (5.8) or (5.15) can be explicitely

computed. The behaviour of F (L) is rather chaotic, as can be checked from Table I,

where we give some of its values. It strongly depends on the prime decomposition of

(L + 1), and for large L, F (L) increases linearly with L. An analytic formula for F (L)

is given in Appendix B.
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TABLE I: Number F (L) of irreducible
factors in det(x − ∆).

L F (L) L F (L) L F (L) L F (L)

1 1 6 16 21 74 26 112

2 4 7 19 22 64 27 112

3 6 8 28 23 122 28 84

4 12 9 34 24 88 29 192

5 18 10 28 25 90 30 88

Finally, let us note that the Galois group (5.14) also acts on the L × L lattice

on which the ASM is defined. This action is defined by σs(x, y) = (x′, y′) where

cos 2πx′

N = cos 2πsx
N and cos 2πy′

N = cos 2πys
N . The operator σs permutes the lattice sites.

In turn, this induces an action on the set of all configurations of the ASM by setting

σsC : σs(zi) = zσs(i). (5.17)

So we can also look at the Galois transformations either as automorphisms of the

lattice or as automorphisms of the set of all configurations of the ASM. In fact, they

even define automorphisms of R, because, although σsC is not necessarily recurrent

even if C is, there is a unique recurrent configuration equivalent to σsC.

6. Toppling invariants from eigenvectors.

Using the basic results of Galois theory briefly recalled in section 5, we study here

toppling invariants constructed from the (left) eigenvectors of ∆. This can be done for

any ASM with diagonalizable toppling matrix, but for definiteness, we proceed with

the ASM defined in section 4, for a square L × L lattice.

Thus ∆ is the discrete Laplacian, whose eigenvalues λm,n were given in (5.1), and

whose eigenvectors read

vm,n(x, y) =
sin 2πmx

N

sin 2πm
N

· sin 2πny
N

sin 2πn
N

, 1 ≤ m, n ≤ L. (6.1)

The normalization is purely conventional, and will be explained below.
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For each eigenvector vm,n, we define an algebraic toppling invariant by taking its

inner product with the z vector of an arbitrary stable configuration, and by evaluating

the result modulo the eigenvalue λm,n of vm,n

Am,n(C) =
∑

x,y

vm,n(x, y) zx,y mod λm,n. (6.2)

Since the eigenvalues and the eigenvector components are in general algebraic numbers

in the algebraic extension F [det(x−∆)], equal to Q(cos 2π
N ) in this case, the congruence

(6.2) must be understood in that extension. Moreover, modulo λm,n means modulo all

multiples wλm,n with w in the ring of algebraic integers of Q(cos 2π
N ).

Clearly under the toppling at site (x0, y0), we have Am,n −→ Am,n +

λm,nvm,n(x0, y0), so that Am,n(C) is invariant provided vm,n(x0, y0) is an algebraic

integer for all x0, y0. This was precisely the reason for choosing the normalization

(6.1). On account of the fact that, for integer x, sin αx
sin α is a polynomial of 2 cosα with

integer coefficients, the components of vm,n are indeed algebraic integers of Q(cos 2π
N )

(see section 5).

Thus the invariants Am,n are all valued in Z(cos 2π
N ) where the congruence (6.2)

is to be taken. To give an explicit example, consider L = 3, N = 8. The relevant

extension is Q(cos 2π
8 ) = Q(

√
2). Choosing for instance m = n = 1, one obtains

λ1,1 = 4 − 2
√

2, v1,1(x, y) = (1,
√

2, 1) ⊗ (1,
√

2, 1), so that

A1,1(C) = z1,1 +
√

2z1,2 + z1,3 +
√

2z2,1 + 2z2,2 +
√

2z2,3 + z3,1

+
√

2z3,2 + z3,3 mod 4 − 2
√

2.
(6.3)

It can be seen that this invariant takes 8 different values by setting z1,1 = k for

k = 0, 1, . . . , 7, and all other zx,y = 0. Indeed 8 = (4 + 2
√

2)(4 − 2
√

2) is the smallest

positive integer equal to a multiple of 4 − 2
√

2. Also recall from section 5 that λ1,1

belongs to the orbit O = {λ1,1, λ3,3} under the Galois group, and that the associated

irreducible polynomial is PO(x) = (x − λ1,1)(x − λ3,3) = x2 − 8x + 8. So we have in

this case that PO(0) = 8 is the number of values taken by the invariant A1,1.

It seems that we have defined L2 invariants Am,n, one for each eigenvalue. However

some of them are related by Galois transformations, and are thus not independent.
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Indeed if λm,n and λm′,n′ are in the same Galois orbit, the corresponding eigenvectors

are related by a Galois transformation σ, and so are the corresponding invariants,

Am′,n′ = σ(Am,n). So in fact we associate an invariant not to each eigenvalue, but

rather to each orbit O under the Galois group, or equivalently to each irreducible

factor PO(x) of the characteristic polynomial of ∆. We thus have F (L) (the number

of orbits) algebraic invariants. Moreover, because of the normalization we chose in

(6.1) for the eigenvectors, each invariant is linear in the height of the left top corner

(x = y = 1) with coefficient 1:

Am,n(C) = z1,1 + . . . mod λm,n. (6.4)

Since 1 is not an eigenvalue, we see that none of the Am,n is trivial. However one

cannot say in general the number of values they take. If one evaluates Am,n(C) at

those configurations for which zx,y = 0 for all (x, y) 6= (1, 1) and z1,1 = k ∈ N , one sees

that Am,n takes positive integer values, but because of the congruence, different k’s will

give Am,n the same value. Denoting by kmax(m, n) the smallest positive integer equal to

zero modulo λm,n, Am,n will take exactly kmax(m, n) different values. To determine that

integer is not easy. Clearly an upper bound is given by the product of λm,n with all its

Galois conjugates, an integer by construction. This gives kmax(m, n) ≤ |PO(0)| where

O is the orbit containing λm,n. It can be shown that the equality holds whenever λm,n

is not the product of two integers belonging to two different subrings of Z(cos 2π
N ). In

the other cases, the exact value of kmax(m, n) depends on the factorization properties of

λm,n. [For instance, for L = 4, N = 10, we have Q(cos 2π
10 ) = Q(

√
5). For λ1,1 = 5−

√
5,

we find kmax = 10, while the associated value of PO(0) = (5 −
√

5)(5 +
√

5) is equal

to 20. The reason is that 5 −
√

5 = 25−
√

5
2 is the product of 2, an integer of Z and of

5−
√

5
2 , an integer of Z(

√
5).]

The next question is whether the invariants Am,n are linearly independent. This

is easily answered negatively. There are F (L) > L invariants and we have shown that

none of them is trivial, so that if they were independent, the group G would be the

product of at least F (L) cyclic groups since it would have to contain the subgroup

×m,n Zkmax(m,n). (Remember from section 3 that toppling invariants provide additive

representations of G.) This is of course impossible since, from section 4, we know that

G is the product of exactly L cyclic factors.
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Even if the set of Am,n is not linearly independent, we can still consider the subset

of independent ones, hopefully of cardinality equal to L, and see if those provide a

complete labelling of the set of recurrent configurations. This too can be easily shown

to fail. If they did, the total number of different values they take should be equal to

Det ∆. But since Det ∆ =
∏

O |PO(0)|, the right number of values is reached only if we

take all the invariants and if, for each of them, kmax(m, n) = |PO(0)|. This is clearly

impossible from the linear dependence among some of them.

Thus the invariants Am,n are neither independent nor complete. In view of the

results of section 3, this is hardly surprising since the Smith normal form is not related

to a spectral decomposition. A natural question is then whether one can find a complete

set of algebraic invariants, analogous to the complete set of integer invariants Ii defined

in (3.11) in terms of the Smith normal form. It is indeed possible by using the following

algorithm.

We note that since the invariants involve congruences, there is no need to use the

exact eigenvectors. We can define invariants by setting

Aλ(C) =
∑

x,y

vλ(x, y) zx,y mod λ, (6.5)

where we now take for vλ a vector with the property that

vλ · ∆ = 0 mod λ. (6.6)

With no loss of generality, we can assume that the components of vλ are in the ring

of integers of some algebraic extension (otherwise λ is simply rescaled), so that we

can see the vectors vλ as left eigenvectors of zero eigenvalue over a finite ring. We

will call them modular eigenvectors (with zero eigenvalue). We look for a set of such

vectors, as small as possible and with as large values of λ as possible, in order to

generate a complete set of invariants with the fewest invariants. To avoid irrelevant

overall factors (if vλ is a modular eigenvector modulo λ, 2vλ is a modular eigenvector

modulo 2λ), we may assume that at least one component of vλ is coprime with λ,

which we can then choose equal to 1. The system (6.6) is overdetermined since it

yields L2 equations for only L2 − 1 components of vλ (one of them was set equal to
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1). The extra equation can be seen as a constraint on the values of λ. By the Chinese

Remainder theorem, it is sufficient to look for solutions of (6.6) for λ a prime power.

For if vλ1
and vλ2

are modular eigenvectors modulo λ1 and λ2 respectively, with λ1 and

λ2 coprime, v = vλ1
λ2 + vλ2

λ1 is a modular eigenvector modulo λ1λ2. Determining

all independent solutions modulo prime powers and systematically using the Chinese

Remainder theorem to obtain the smallest number of modular eigenvectors, we get a

set of eigenvectors {vλi
} where λi is a multiple of λi+1. ((6.6) implies that λ1, hence all

λi, divides the determinant of ∆.) The corresponding set of invariants {Aλi
} defines a

complete set of toppling invariants.

As an example, consider once more the 2 × 2 case. Let us choose the vλ’s and the

λ’s in Z, and assume

Aλ(C) = z1 + bz2 + cz3 + dz4 mod λ, (6.7)

where the configuration C is represented by

(

z1 z2

z3 z4

)

. The equation (6.6) implies

c = 4 − b mod λ and d = 4b − 1 mod λ, as well as

8b − 16 = 16b − 8 = 0 mod λ. (6.8)

For λ = pm with p an odd prime, (6.8) is equivalent to b = 2 = 2−1 mod pm, which

has no solution unless pm = 3, in which case one finds one invariant,

A3(C) = z1 + 2z2 + 2z3 + z4 mod 3. (6.9)

For λ = 2m, the two equations (6.8) are trivially satisfied for 2m = 8, but cannot be

satisfied for 2m ≥ 16 (16b − 8 = −8 6= 0 mod 16). Thus the maximal value of λ is 8,

and one finds two independent invariants modulo 8 (b = 1,−2)

A8(C) = z1 + z2 + 3z3 + 3z4 mod 8. (6.10a)

A′
8(C) = z1 − 2z2 − 2z3 − z4 mod 8, (6.10b)

Using the Chinese Remainder theorem, we obtain two invariants, modulo 24 and 8

respectively:

A24(C) = 8A3(C) + 3A′
8(C) = 11z1 + 10z2 + 10z3 + 5z4 mod 24, (6.11a)
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A8(C) = z1 + z2 + 3z3 + 3z4 mod 8. (6.11b)

As expected, one recovers the invariants (3.8) constructed out of the Smith normal

form of ∆, I1 = 5A24 and I2 = 3A8. Clearly, this is a general fact: choosing to work on

Z, the above algorithm allows to compute the elementary divisors of ∆ (the λi’s), as

well as the relevant lines of the matrix A−1 needed to obtain the invariants (see (3.11)),

since from (3.9) and (3.10), the rows of A−1 are precisely modular eigenvectors modulo

the elementary divisors of ∆. However the algorithm is completely general regarding

the ring of integers we want to work in. In particular, one can find a complete set of

invariants with values in the ring of integers of any algebraic extension, something we

will not pursue here since the algebraic invariants we would so obtain can be read off

from the Z–valued ones (by decomposing the elementary divisors di ∈ Z into a product

of powers of prime ideals of the extension).

As a conclusion to this section, we found it rather attractive to use Galois theory

in order to associate toppling invariants with irreducible factors of the characteristic

polynomial of ∆, to the end of extracting information about G from the Galois

decomposition of this polynomial. Although this method can be useful, the usefulness

being dependent on the spectrum of ∆, it generally provides only partial information

on G.

7. Some related problems

In this section, we comment briefly on two intriguing questions related to sandpile

automata on finite square lattices.

QUESTION 1. Wiesenfeld et al [15] have studied a deterministic version of the sandpile

automaton considered here, in which the particle addition is always done at the central

site of a (2L+1)× (2L+1) square lattice. They observed, and it is easy to prove, that

starting from an initial arbitrary configuration, once the transient configurations are

gone, the system shows a cyclic behavior, and the period of the cycle TL is independent

of the initial configuration. The exact dependence of TL on L is still quite puzzling.
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Wiesenfeld et al have numerically determined TL = 4, 16, 104, 544, 146 248, 7 889 840

for L = 0 to 5, and found that TL increases at a much slower rate than Det ∆,

TL ∼ exp 0.44 L2 against Det ∆ ∼ exp 4.67 L2. The period for L up to 9 has been

determined by Markosova and Markos [16]. It is easy to see that TL is the order of

the operator a(L + 1, L + 1) on the space R of recurrent configurations and so is the

smallest positive integer such that

a(L + 1, L + 1)TL = I. (7.1)

If a(L + 1, L + 1)TL = I on R, we obtain that all the toppling invariants (3.3) must

be equal to zero modulo 1 at the configuration which is zero everywhere except at

the central site, where it is TL. Multiplying the invariants by Det ∆ and defining the

integer matrix E = (Det∆)∆−1, we obtain that TL is the smallest positive integer

satisfying

Ei,(L+1,L+1) TL = 0 mod (Det∆), for all i. (7.2)

Setting M = gcd {Ei,(L+1,L+1) : 1 ≤ i ≤ 2L + 1}, it is easy to see that

TL = (Det ∆)/M. (7.3)

Since TL is independent of the initial configuration, we may choose a configuration

which has the symmetry of the square. This symmetry is preserved under symmetrical

topplings, and under addition of sand at the central site, hence we can restrict ourselves

to Rsym, the subspace of recurrent configurations having the symmetry of a square.

On a (2L+1)× (2L+1) lattice, a symmetrical configuration is completely specified by

the heights in an octant having
(L+1)(L+2)

2 sites. Instead of studying the symmetrical

configurations on a square lattice, we can just as well study all recurrent configurations

on an octant OL with a new toppling matrix ∆sym given by

(∆sym)ij =
∑

j′

∆i,j′ , for i, j ∈ OL, (7.4)

where the sum over j′ is over sites which are related to j by the symmetries of the

square (dihedral group of order 8). Even though it does not satisfy
∑

i(∆sym)ij ≥ 0
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for all i, it can be shown that the general results of [6] hold for this case, so that for

example

|Rsym| = Det∆sym = |Gsym|, (7.5)

where Gsym is the abelian group generated by the operators ai , i ∈ OL, subjected to

the relations (2.3) with ∆ replaced by ∆sym. A simple calculation shows that

Det∆sym =
∏

m≤n

λm,n, (7.6)

where the product over m and n is over odd values of m ≤ n between 1 and (2L + 1),

and with λm,n given in (5.1). For large L, |Gsym| varies as |G|1/8 ∼ exp 0.58 L2, so that

TL increases at a substantially lower rate than |Gsym|. As in section 3, the structure

of Gsym can be determined by computing the elementary divisors of ∆sym. We find for

the first four values of L

L = 1 : Gsym = Z16 × Z2, (7.7a)

L = 2 : Gsym = Z104 × Z4 × Z2, (7.7b)

L = 3 : Gsym = Z544 × Z32 × Z2 × Z2, (7.7c)

L = 4 : Gsym = Z146248 × Z8 × Z4 × Z2 × Z2. (7.7d)

We see that the order of the largest cyclic group in Gsym is apparently nothing but the

period TL. In terms of the invariants (3.11) constructed from the Smith normal form

of ∆sym, this would mean that the element of the first row of A−1 corresponding to the

central site is coprime with the largest elementary divisor d sym
1 , implying TL = d sym

1 .

What is certainly true is that TL must divide d sym
1 since a(L+1, L+1) generate a cyclic

subgroup of Gsym, the largest one being of order d sym
1 . Although there are plausibility

arguments that TL is actually equal to d sym
1 , the proof (or disproof) of this simple fact

is still lacking.

The question of the rank of Gsym can also be addressed. However here, an argument

based on the eigenvectors of eigenvalue 4, similar to the one we used in section 4, does

not work since the degeneracy of the eigenvalue 4 is only [L2 ] + 1, with [x] the integral

part of x. (It nevertheless implies that so many cyclic factors of Gsym have order
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multiple of 4.) But on the other hand, it is easy to see that there are exactly L + 1

independent modular eigenvectors modulo 2 (of ∆sym), which shows that the rank of

Gsym is L + 1. (L + 1 is also an upper bound since all operators a(x, y) for (x, y) ∈ OL

can be expressed in terms of a(1, y) for y = 1, 2, . . . , L + 1.) The independent modular

eigenvectors have only one non–zero component, at any of the L + 1 positions on the

principal diagonal of OL: v
(k)
λ=2(x, y) = δx,k δy,k for 1 ≤ k ≤ L + 1. This proves that

each cyclic subgroup of Gsym has order multiple of 2.

The fact that TL must be a divisor of |Gsym| already gives us a fairly good

upperbound estimate of it. It is instructive to look at the values of |Gsym|/TL for

small L. From the results of Markosova et al [10], we see that for L = 0 up to 8,

these values are 1, 2, 23, 27, 27, 211, 29, 222, 215 · 2701. Note that they show a rather

irregular, non–monotonic behavior with L. They have a large power of 2 as divisor,

but sometimes have other factors as well.

The fluctuations in TL appear to be related to the appearance of degeneracies in the

eigenvalue spectrum of ∆sym. For example, the fact that the eigenvalue 4 is ([L2 ] + 1)–

fold degenerate and the existence of L + 1 modular eigenvectors modulo 2 imply that

TL is a divisior of 2−(L+[L/2])|Gsym|. Another accidental degeneracy in the spectrum of

Gsym occurs when 2L + 2 is a multiple of 6. Writing 2L + 2 = 6ℓ, we can easily verify

that

λ2ℓ−m,2ℓ+m = λ3ℓ,m

λ4ℓ−m,4ℓ+m = λ3ℓ,6ℓ−m.
(7.8)

In the Galois factorization of |Gsym| this implies that there are some factors which are

repeated. For example, for L = 8, the factor 2701 occurs twice in |Gsym|. While for a

given value of L, the degeneracies, and the group structure of Gsym can be explicitly

determined, it seems difficult at this stage to say much more about this “irregular”

variation of TL with L for general L.

QUESTION 2. This concerns the structure of the identity configuration. Even the

L × L square case shows nontrivial features. The identity configuration Cid is the

unique recurrent configuration which is equivalent under toppling to the configuration

with all heights zero. We have already noted that all toppling invariants Ii(Cid) must
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be zero. It also implies that Cid is the unique recurrent configuration such that

Ti ≡ ∑

j(∆
−1)ijzj(Cid) are integers for all i (by using the invariants (3.3)). This

integer vector has the interesting interpretation that Ti is the number of topplings

occurring at i when Cid is added to itself.

The identity configuration shows complicated fractal structures. Some color–coded

pictures of these may be found in [21]. We mention here two remarkable properties of

the identity.
∗

First, in the central area of a 2L × 2L lattice, there is a whole square

where all sites have maximal height, equal to 3. The linear size of this central square

was numerically measured for L up to 100, and goes like 4L/5, so that the central

square covers approximately 4/25 of the whole lattice.

The second property, even more remarkable, is that the identity configuration on

the (2L+1)× (2L+1) lattice appears to be related in a very simple way to that on the

2L × 2L lattice. Indeed, if we divide the configuration C
(2L)
id into four equal squares

and pull them apart by one lattice spacing so as to leave a cross in the middle, we get

C
(2L+1)
id provided the heights on the cross are properly assigned. In obvious notation,

if

C
(2L)
id =

(

B1 B2

B3 B4

)

, (Bi are L × L blocks), (7.9)

where the four blocks Bi are related by the symmetry transformations of the square

(since Cid has that symmetry), then

C
(2L+1)
id =







B1 R1 B2

R2 zmid R3

B3 R4 B4






, (Ri are 1 × L rows). (7.10)

In addition the height at the center zmid is always 0, and the branches of the cross

given by the Ri (also related by symmetry transformations) have a simple structure.

The first instance of this phenomenon occurs when going from the 2 × 2 to the 3 × 3

∗ We are indebted to Jean-Louis Ruelle for having run a program to compute the identity, and for

having pointed out these two regularities.
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lattices:

C
(2)
id =

(

2 2

2 2

)

−→ C
(3)
id =







2 1 2

1 0 1

2 1 2






. (7.11)

More identity configurations are listed in Appendix C, for which this property may be

checked (as well as the first one mentioned above).

In addition, the array Ti defined in a previous paragraph also has the “cross”

property (7.9–10). For instance,

T (6) =























2 3 4 4 3 2

3 5 6 6 5 3

4 6 7 7 6 4

4 6 7 7 6 4

3 5 6 6 5 3

2 3 4 4 3 2























−→ T (7) =





























2 3 4 4 4 3 2

3 5 6 6 6 5 3

4 6 7 7 7 6 4

4 6 7 7 7 6 4

4 6 7 7 7 6 4

3 5 6 6 6 5 3

2 3 4 4 4 3 2





























. (7.12)

Because the Cid and T arrays are related by Cid = ∆ T , the fact that both have the

“cross” property fixes their values on the branches of the cross (for odd lattices). For

instance, the rows in T corresponding to the Ri (see (7.10)) must be equal to the rows

bordering them, as shown in (7.12) for 2L + 1 = 7. The first property mentioned for

Cid, namely the existence of a big central square with constant values, does not hold

for T . There is in fact in T a central square of constant values, but its linear size

cannot exceed 3 if Cid is to be recurrent at all (see (7.12)). As a final remark, we

observed that the total number of topplings occurring when the identity is added to

itself, i.e.
∑

i T
(L)
i , equal to 160 and 235 for L = 6 and 7, grows like a power of L,

with an exponent close to 4 (∼ 3.9).

Similar geometric structures are found when ASM are allowed to relax from special

unstable states, say all heights equal to 4 [14]. These fractal structures are not well

understood yet.
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Appendix A

In this appendix, we determine the structure of the group G for the ASM defined

on the L × 2 lattice. In this case, the particle addition operators a(x, y) satisfy the

relations

a(x + 1, 1) = a4(x, 1) a−1(x − 1, 1) a−1(x, 2), (A1)

and

a(x + 1, 2) = a4(x, 2) a−1(x − 1, 2) a−1(x, 1). (A2)

Here 1 ≤ x ≤ L, and by convention we assume that

a(0, y) = a(L + 1, y) = I, for y = 1, 2. (A3)

Using the recursion relations (A1) and (A2) we can express a(x, 1) and a(x, 2) as

product of powers of a ≡ a(1, 1) and b ≡ a(1, 2). Explicitely we have

a(x, 1) = aµx b−νx , (A4)

a(x, 2) = a−νx bµx , (A5)

where µx and νx are positive integers satisfying the following recurrence relations

µx+1 = 4µx + νx − µx−1, (A6)

νx+1 = 4νx + µx − νx−1, (A7)
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with the initial conditions µ0 = ν0 = ν1 = 0, and µ1 = 1. This can easily be solved by

defining the new functions

mx = µx − νx, nx = µx + νx. (A8)

They satisfy uncoupled binary recurrence relations

mx+1 = 3mx − mx−1, (A9)

nx+1 = 5nx − nx−1, (A10)

with m0 = n0 = 0, m1 = n1 = 1. The solutions read

mx =
1√
5

[(

3 +
√

5

2

)x

−
(

3 −
√

5

2

)x]

, (A11)

nx =
1√
21

[(

5 +
√

21

2

)x

−
(

5 −
√

21

2

)x]

. (A12)

The first values of mx, nx, µx, νx are given below in Table II.

TABLE II

x 0 1 2 3 4 5 6 7 8

mx 0 1 3 8 21 55 144 377 987
nx 0 1 5 24 115 551 2 640 12 649 60 605
µx 0 1 4 16 68 303 1 392 6 513 30 796
νx 0 0 1 8 47 248 1 248 6 136 29 809

One may note that mx are precisely the even terms in the standard Fibonacci

sequence.

To determine the structure of G in terms of the generators a and b, we note from

(A3–5) that the only relations among them are

aµL+1 b−νL+1 = I, (A13)
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a−νL+1 bµL+1 = I. (A14)

According to the discussions in sections 3 and 4, the structure of G is given in terms

of the elementary divisors d1, d2 of the matrix

(

µL+1 −νL+1

−νL+1 µL+1

)

. We find that

GL×2 = Zd1
× Zd2

, with d1 = (µ2
L+1 − ν2

L+1)/d2 and d2 = gcd(µL+1, νL+1). (A15)

As a function of L, the number d2 has an irregular behaviour, with very large sudden

jumps. The only result we could firmly establish follows from the double inequality

(4.12): d2 > 1 if L + 1 is divisible by 3, so in that case, G is not cyclic.

Rather surprisingly, the elementary divisors can equally be expressed in terms of

mL+1 and nL+1 by the neater formula

d1 = mL+1nL+1/d2, d2 = gcd(mL+1, nL+1). (A16)

From the relation (A8), Eqns (A15) and (A16) are clearly equivalent when mx and nx

are both odd, which is the case if x is not divisible by 3. That they are equivalent for

x a multiple of 3 lies in the delicate fact that the largest power of 2 that divides mx is

the same as that dividing nx. To see this, we consider the subsequences M(r) = m3r

and N(r) = n3r. We find from (A11–12) that they satisfy the recursions

M(r + 1) = 18 M(r) − M(r − 1), (A17)

N(r + 1) = 110 N(r) − N(r − 1), (A18)

subjected to the initial conditions M(0) = N(0) = 0, M(1) = 8, and N(1) = 24. Now

the desired result that for each r, M(r) and N(r) have the same 2–potency (i.e. the

largest powers of 2 dividing them are the same) follows from a more general result by

the last author [22], which gives a formula for the 2–potency for any ‘binary recursive

sequence’ θ(r) defined by θ(0) = 0, θ(1) = θ, and θ(r+1) = 2R θ(r)+S θ(r−1), where

θ is an arbitrary integer, and R, S are odd integers.
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Appendix B

In this appendix, we give the explicit formula giving the number F (L) of irreducible

factors (over Q) of the polynomial PL(x) for arbitrary L. In section 5, PL(x) was the

characteristic equation of the discrete Laplacian on a L×L lattice with open boundary

conditions and was defined by (N = 2(L + 1))

PL(x) =
L
∏

m,n=1

(

x − 4 + 2 cos
2πm

N
+ 2 cos

2πn

N

)

. (B1)

The roots λm,n = 4−2 cos 2πm
N −2 cos 2πn

N of PL belong to the extension Q(cos 2π
N ) and

are permuted by its Galois group GalL, which acts on them by (see section 5)

σs(λm,n) ≡ λsm,sn, for s ∈ Z∗
N/{±1}. (B2)

As discussed in section 5, finding the irreducible factors of PL amounts to split the

set of roots {λm,n} into orbits under GalL, so that

F (L) = |{λm,n : 1 ≤ m, n ≤ L}/GalL|. (B3)

By a classical theorem (see for instance [23]), the number of orbits of a set X under

the action of a group G is equal to the average number of fixed–points of G in X, that

is

|X/G| =
1

|G|
∑

g∈G

|{x ∈ X : gx = x}|. (B4)

This allows to recast (B3) as

F (L) =
2

ϕ(N)

∑

s∈Z∗

N/{±1}
|{1 ≤ m, n ≤ L : λsm,sn = λm,n}|. (B5)

From the expression of λm,n, we have the obvious relations λm,n = λ±m,±n = λ±n,±m

where the signs are uncorrelated. The only subtle point of the analysis lies in the

possible existence of other relations. For example, if L = 4 (i.e. N = 10), s takes the
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two values 1 and 3, we have that σ3(λ1,4) ≡ λ3,2 is actually equal to λ1,4 = 4 even

though (3, 2) 6= (±1,±4) nor (±4,±1) mod 10. This situation is however not generic,

and can be proved to only happen for the pairs (m, n) with m + n = L + 1 (related to

the eigenvalue 4 of the Laplacian). Thus if we leave them aside, we obtain the result

that λsm,sn = λm,n if and only if (sm, sn) = (±m,±n) or (±n,±m) mod N . Each of

the L eigenvalues λm,L+1−m = 4 clearly forms an orbit on its own under the Galois

group and we obtain

F (L) = L +
2

ϕ(N)

∑

s∈Z∗

N/{±1}
|{1 ≤m, n ≤ L and m + n 6= L + 1 :

(sm, sn) = ±(m,±n) or ± (n,±m) mod N}|.
(B6)

The actual calculation of (B6) being straightforward but somewhat lengthy, we

only quote the final result. Let N = 2(L + 1) have the prime factorization given by

N =
∏

p

pap. (B7)

Then the number of irreducible polynomial factors of PL(x) equals

F (L) =
N

2
+ 6 +

1

2

∏

p

pap+1 + pap − 2

p − 1
+ 2(2a2 − 1)

∏

p 6=2

(2ap + 1)

+
∏

p=1 mod 4

(2ap + 1) − (7a2 + 5)
∏

p 6=2

(ap + 1)

+ [
∏

p 6=2

(2ap + 1) − 1] · δ(a2 = 1).

(B8)

It can be shown that the average growth of F (L) is linear in L. Some particular values

are given in Table I, section 5.

Appendix C

We list here the identity configurations C
(L)
id , discussed in sections 3 and 7, for

L = 4 and 5 and L = 10 and 11.
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C
(4)
id =













2 3 3 2

3 2 2 3

3 2 2 3

2 3 3 2













, C
(5)
id =



















2 3 2 3 2

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

2 3 2 3 2



















,

C
(10)
id =













































2 3 3 0 3 3 0 3 3 2

3 2 2 1 2 2 1 2 2 3

3 2 2 3 3 3 3 2 2 3

0 1 3 2 2 2 2 3 1 0

3 2 3 2 2 2 2 3 2 3

3 2 3 2 2 2 2 3 2 3

0 1 3 2 2 2 2 3 1 0

3 2 2 3 3 3 3 2 2 3

3 2 2 1 2 2 1 2 2 3

2 3 3 0 3 3 0 3 3 2













































C
(11)
id =



















































2 3 3 0 3 2 3 0 3 3 2

3 2 2 1 2 1 2 1 2 2 3

3 2 2 3 3 2 3 3 2 2 3

0 1 3 2 2 1 2 2 3 1 0

3 2 3 2 2 1 2 2 3 2 3

2 1 2 1 1 0 1 1 2 1 2

3 2 3 2 2 1 2 2 3 2 3

0 1 3 2 2 1 2 2 3 1 0

3 2 2 3 3 2 3 3 2 2 3

3 2 2 1 2 1 2 1 2 2 3

2 3 3 0 3 2 3 0 3 3 2



















































,

Appendix D

In [17], Lee and Tzeng have considered the following one–dimensional deterministic
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sandpile model. The L sites of a linear chain, labelled 0 to L− 1, are assigned a height

variable zi taking positive integer values. A site j becomes unstable if the difference

zj − zj+1 exceeds some integer N , considered as a parameter. In this case, the site j

looses N grains of sand which fall on its N right nearest neighbours. They take open

boundary conditions zi = 0 for all i ≥ L, so that, under the toppling at site j, the

sand is redistributed according to zi → zi−∆ij , where the toppling matrix is the lower

triangular matrix

∆ij =

{

N if i = j,

−1 if 1 ≤ i − j ≤ N .
(D1)

The deterministic dynamics is defined by dropping, at each time step, one grain of sand

on the leftmost site i = 0 and by letting the system relax. The number of recurrent

configurations is equal to NL, also equal to the determinant of ∆. Note that this model

is a non–abelian sandpile model as the toppling condition is not local.

It was shown in [17] that for N = 2 and 3, the recurrent configurations can be

labelled by the values of a toppling invariant, an integer function taken modulo NL,

(see also [24]). They wrote down the invariant when N = 2 for all values of L, as well

as when N = 3 for some particular values of L. We show here that our general method

allows to prove that one invariant is sufficient to label all recurrent configurations, for

all N , and we will compute this invariant for N = 2, 3, all values of L.

That only one invariant gives a complete labelling of the recurrent configurations

amounts to prove that the elementary divisors of ∆ are d1 = NL and di = 1 for i ≥ 2.

Equivalently, it amounts to show that among all the invariants (3.3) constructed from

∆−1, only one is independent. The matrix ∆−1 is easily obtained and read

∆−1
ij =

L−1
∑

k=0

ck δi−j,k, (D2)

where the entries ck satisfy the recurrence relations

Nck = ck−1 + ck−2 + . . . + ck−N ,

c0 =
1

N
, c−k = 0 for all k ≥ 1.

(D3)

We thus obtain the L invariants

Qi(C) =
i
∑

k=0

ci−kzk mod 1, i = 0, 1, . . . L − 1. (D4)
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The first invariants read Q0 = 1
N z0 mod 1, Q1 = 1

N2 z0 + 1
N z1 mod 1, Q2 = N+1

N3 z0 +

1
N2 z1 + 1

N z2 mod 1, so that we have

NQ1 = Q0 mod 1, (D6a)

NQ1 = (N + 1)Q0 mod 1, NQ2 = (N + 1)Q1 mod 1, (D6b)

showing that Q0 can be expressed in terms of Q1, itself expressable in terms of Q2. It

is not difficult to show recursively that this pattern continues to hold, namely there

exists, for all i between 1 and L − 1, an integer Xi coprime with N such that

NQj = XiQj−1 mod 1, for all 1 ≤ j ≤ i. (D7)

(From (D6) we have X1 = 1 and X2 = N+1.) Equation (D7) implies that all invariants

Q0, Q1, . . . , QL−2 can be expressed in terms of QL−1 which is thus the only independent

one and which provides a complete labelling of the set of recurrent configurations.

To compute the invariant QL−1, we note that the coefficients ck satisfy in fact a

recurrence relation of order N − 1:

Nck + (N − 1)ck−1 + . . . + ck+1−N = NcN−1 + (N − 1)cN−2 + . . . + c0 = 1. (D8)

For N = 2 and 3, the solutions to (D8) read (k ≥ 0)

N = 2 : ck =
1

3
[1 − (

−1

2
)k+1], (D9a)

N = 3 : ck =
1

6
+

1

12
·
[

(−1 −
√
−2

3

)k

+

(−1 +
√
−2

3

)k
]

. (D9b)

Using these values in QL−1 of (D4) yields the desired result. For higher values of N ,

the coefficients ck are given by the generating function

fN (t) =

∞
∑

k=0

c
(N)
k tk = (1 − t) .

[

tN+1 − (N + 1)t + N
]−1

. (D10)
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