2,430 research outputs found

    Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon

    Get PDF
    The risk of mortality associated with a long-distance migration will depend on an animal's physiological state, as well as the prevailing ecological conditions. Here we assess whether juvenile telomere length, which in endotherms has been shown to be a biomarker of physiological state and expected lifespan, predicts whether wild Atlantic salmon Salmo salar successfully complete their marine migration. Over 1800 juvenile fish were trapped, measured, PIT-tagged and a tissue biopsy taken when migrating as juveniles down-river towards the sea. Survivors of the marine phase of the life cycle were then re-trapped and re-sampled when returning to the river to spawn as sexually mature adults, 1.5-2.5 years later. Most individuals experienced a reduction in telomere length during the marine migratory phase of their life cycle. While the relative rate of telomere loss was greater in males than females, telomere loss was unrelated to growth at sea. Contrary to expectations, salmon that had the shortest telomeres at the time of the outward migration had the greatest probability of surviving through to the return migration. This effect, independent of body size, may indicate a trade-off between investment in readiness for marine life (which favours high glucocorticoid levels, known to increase telomere attrition in other vertebrate species) and investment in telomere maintenance. Survival was also significantly influenced by the seasonal timing of outward migration, with the fish migrating downstream earliest in the spring having the highest probability of return. This study reveals that telomere length is associated with survival, although in ways that contrast with patterns seen in endotherms. This illustrates that while telomeres may be universally important for chromosome protection, the potential for telomere dynamics to predict performance may vary across taxa

    The Scottish invasion of pink salmon in 2017

    Get PDF
    No abstract available

    Links between parental life histories of wild salmon and the telomere lengths of their offspring

    Get PDF
    The importance of parental contributions to offspring development and subsequent performance is self-evident at a genomic level; however, parents can also affect offspring fitness by indirect genetic and environmental routes. The life history strategy that an individual adopts will be influenced by both genes and environment; and this may have important consequences for offspring. Recent research has linked telomere dynamics (i.e. telomere length and loss) in early life to future viability and longevity. Moreover, a number of studies have reported a heritable component to telomere length across a range of vertebrates, though the effects of other parental contribution pathways have been far less studied. By using wild Atlantic salmon with different parental life histories in an experimental split-brood IVF mating design and rearing the resulting families under standardised conditions, we show that there can be significant links between parental life history and offspring telomere length (studied at the embryo and fry stage). Maternal life history traits, in particular egg size, were most strongly related to offspring telomere length at the embryonic stage, but then became weaker through development. In contrast, paternal life history traits, such as the father's growth rate in early life, had a greater association in the later stages of offspring development. However, offspring telomere length was not significantly related to either maternal or paternal age at reproduction, nor to paternal sperm telomere length. This study demonstrates both the complexity and the importance of parental factors that can influence telomere length in early life

    Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli

    Get PDF
    The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN), a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH). We made injections of the retrograde tracer Fluorogold (FG) into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl). Fos-like immunoreactivity (FLI) was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose) and bitter (0.003 M quinine) compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms

    Theoretical Limb Darkening for Classical Cepheids: II. Corrections for the Geometric Baade-Wesselink Method

    Full text link
    The geometric Baade-Wesselink method is one of the most promising techniques for obtaining a better calibration of the Cepheid period-luminosity relation by means of interferometric measurements of accurate diameters. In this paper we present new wavelength- and phase-dependent limb darkening corrections based on our time-dependent hydrodynamic models of the classical Cepheid zeta Gem. We show that a model simulation of a Cepheid atmosphere, taking into account the hydrodynamic effects associated with the pulsation, shows strong departures from the limb darkening otherwise predicted by a static model. For most of its pulsational cycle the hydrodynamic model predicts a larger limb darkening then the equivalent static model. The hydrodynamics affects the limb darkening mainly at UV and optical wavelengths. Most of these effects evolve slowly as the star pulsates, but there are phases, associated with shocks propagating into the photosphere, in which significant changes in the limb darkening take place on time-scales of the order of less than a day. We assess the implication of our model LD corrections fitting the geometric Baade-Wesselink distance of zeta Gem for the available near-IR PTI data. We discuss the effects of our model limb darkening on the best fit result, and analyze the requirements needed to test the time-dependence of the limb darkening with future interferometric measurements.Comment: 22 pages, 5 figures, to be published on the Astrophysical Journal, June 1 2003 issu

    3D vanadium oxide inverse opal growth by electrodeposition

    Get PDF
    Three-dimensional vanadium pentoxide (V2O5) material architectures in the form of inverse opals (IOs) were fabricated using a simple electrodeposition process into artificial opal templates on stainless steel foil using an aqueous solution of VOSO4.χH2O with added ethanol. The direct deposition of V2O5 IOs was compared with V2O5 planar electrodeposition and confirms a similar progressive nucleation and growth mechanism. An in-depth examination of the chemical and morphological nature of the IO material was performed using X-ray crystallography, X-ray photoelectron spectroscopy, Raman scattering and scanning/transmission electron microscopy. Electrodeposition is demonstrated to be a function of the interstitial void fraction of the artificial opal and ionic diffusivity that leads to high quality, phase pure V2O5 inverse opals is not adversely affected by diffusion pathway tortuosity. Methods to alleviate electrodeposited overlayer formation on the artificial opal templates for the fabrication of the porous 3D structures are also demonstrated. Such a 3D material is ideally suited as a cathode for lithium ion batteries, electrochromic devices, sensors and for applications requiring high surface area electrochemically active metal oxides

    Relocation and expansion planning for dairy producers

    Get PDF
    Relocating or expanding a dairy facility requires a tremendous amount of time and planning. Owners or managers of dairies will go through a number of steps including: 1) developing a business plan; 2) choosing a design process; 3) developing specifications; 4) selecting location/site; 5) obtaining permits/ legal; 6) obtaining bids; 7) selecting contractors; 8) buying cattle; 9) purchasing feeds; 10) financing; 11) managing construction; 12) hiring and training employees; 13) developing management protocols for the dairy; and 14) managing information flow. The dairy can be divided into these components: 1) milking parlor; 2) cow housing; 3) special needs facility (e.g., hospital, closeups); 4) replacement heifer housing; 5) manure management system; and 6) feed center. This article will focus on milking parlors, cow housing, grouping strategies, and site selection.; Dairy Day, 1999, Kansas State University, Manhattan, KS, 1999

    Mineral inclusions in diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds?

    Get PDF
    Mineral inclusions in diamonds play a critical role in constraining the relationship between diamonds and mantle lithologies. Here we report the first major and trace element study of mineral inclusions in diamonds from the Karowe Mine in north-east Botswana, along the western edge of the Zimbabwe Craton. From a total of 107 diamonds, 134 silicate, 15 oxide, and 22 sulphide inclusions were recovered. The results reveal that 53% of Karowe inclusion-bearing diamonds derived from eclogitic sources, 44% are peridotitic, 2% have a sublithospheric origin, and 1% are websteritic. The dominant eclogitic diamond substrates sampled at Karowe are compositionally heterogeneous, as reflected in wide ranges in the CaO contents (4–16 wt%) of garnets and the Mg# (69–92) and jadeite contents (14–48 mol%) of clinopyroxenes. Calculated bulk rock REEN patterns indicate that both shallow and deep levels of the subducted slab(s) were sampled, including cumulate-like protoliths. Peridotitic garnet compositions largely derive from harzburgite/dunite substrates (~90%), with almost half the garnets having CaO contents <1.8 wt%, consistent with pyroxene-free (dunitic) sources. The highly depleted character of the peridotitic diamond substrates is further documented by the high mean and median Mg# (93.1) of olivine inclusions. One low-Ca garnet records a very high Cr2O3 content (14.7 wt%), implying that highly depleted cratonic lithosphere at the time of diamond formation extended to at least 220 km depth. Inclusion geothermobarometry indicates that the formation of peridotitic diamonds occurred along a 39–40 mW/m2 model geotherm. A sublithospheric inclusion suite is established by three eclogitic garnets containing a majorite component, a feature so far unique within the Orapa cluster. These low- and high-Ca majoritic garnets follow pyroxenitic and eclogitic trends of majoritic substitution, respectively. The origin of the majorite-bearing diamonds is estimated to be between 330 to 420 km depth, straddling the asthenosphere–transition zone boundary. This new observation of superdeep mineral inclusions in Karowe diamonds is consistent with a sublithospheric origin for the exceptionally large diamonds from this mine
    • …
    corecore