982 research outputs found

    Effect of coordinating solvents on the structure of Cu(II)-4,4'-bipyridine coordination polymers

    Get PDF
    Solvent can play a crucial role in the synthesis of coordination polymers (CPs). Here, this study reports how the coordinating solvent approach (CSA) can be used as an effective tool to control the nature of the final CP. This study exploited the system Cu(II)-4,4 '-bipyridine coupled to different coordinating solvents, such as DMA, DMF and DMSO. This allowed the isolation and structurally characterization of four new CPs: three 2D layered networks and one 1D chain. Moreover, it was evidenced that even adventitious water can play the role of the coordinating solvent in the final CP

    Homodinuclear Lanthanide Complexes with the Divergent Heterotopic 4,4′-Bipyridine N-Oxide (bipyMO) Ligand

    Get PDF
    The synthesis of dinuclear molecular complexes [Eu2(dbm)6(bipyMO)2], 1, [Tb2(dbm)6(bipyMO)2], 2, [Eu2(tta)6(bipyMO)2], 3 [Eu2(hfac)6(bipyMO)3], 4, [Tb2(hfac)6(bipyMO)3], 5 is here reported (bipyMO = 4,4′-bipyridine N-oxide, Hdbm = dibenzoylmethane, Htta = thenoyltrifluoroacetone, Hhfac = hexafluoroacetylacetone). The products were obtained in mild conditions and with high yields reacting anhydrous lanthanide β-diketonates and bipyMO in 1:1 or 1.5 molar ratio in toluene. X-ray single crystal studies on 2, 3, 4 showed that the heterotopic ligands are hypodentate, bridging the two lanthanide centres exclusively through the oxygen atom. Photoluminescence studies show bright red emissions from europium derivatives with absolute quantum yields up to 44 %

    Optical Properties of ZnP2 Nanoparticles in Zeolite

    Full text link
    We report that for the first time the nanoparticles of II-V semiconductor (ZnP2) were prepared and studied. ZnP2 nanoparticles were prepared by incorporation into zeolite Na-X matrix. Absorption, diffuse reflection (DR) and photoluminescence (PL) spectra of the ZnP2 nanoclusters incorporated into the supercages of zeolite Na-X were measured at the temperature 77 K. Five bands B1-B5 are observed in both the DR and PL spectra demonstrating the blue shift from the line of free exciton in bulk crystal. We attribute the B1-B5 bands to some stable nanoclusters with size less than the size of zeolite Na-X supercage. We observed Stokes shift of the PL bands from the respective absorption bands. The nonmonotonic character of its dependence on the cluster size can be explained as the result of competition of the Frank-Condon shift and the shift due to electronic relaxation.Comment: Submitted to Microporous and Mesoporous Material

    A new route for the preparation of flexible skin\u2013core poly(ethylene-co-acrylic acid)/polyaniline functional hybrids

    Get PDF
    Surface modification of polymeric films is a way to obtain final products with high performance for many specific and ad hoc tailored applications, e.g. in functional packaging, tissue engineering or (bio)sensing. The present work reports, for the first time, on the design and development of surface modified ethylene\u2013 acrylic acid copolymer (EAA) films with polyaniline (PANI), with the aim of inducing electrical conductivity and potentially enable the electronic control of a range of physical and chemical properties of the film surface, via a new \u2018\u2018grafting from\u2019\u2019 approach. In particular, we demonstrate that PANI was successfully polymerized and covalently grafted onto flexible EAA substrates, previously activated. The final hybrid materials and the corresponding intermediates were fully characterized via FTIR, XPS, SEM\u2013EDAX, mechanical and electrical tests. The mechanical properties of the films are not detrimentally affected by each treatment step, while a significant increase in electrical conductivity was achieved for the new hybrid materials

    2-[4-(Carb­oxy­meth­yl)phen­oxy]acetic acid

    Get PDF
    The title compound, C10H10O5, was obtained by the reaction of 4-hy­droxy­phenyl­acetic acid with chloro­acetic acid. In the crystal, the mol­ecules form a three-dimensional network by way of inter­molecular O—H⋯O hydrogen bonding

    A convenient synthesis of highly luminescent lanthanide 1D-zigzag coordination chains based only on 4,4′-bipyridine as connector

    Get PDF
    The coordination polymers View the MathML source·C7H8 (Ln = Eu, β-dik = dbm, tta, hfac; Ln = Tb; β-dik = dbm; Hdbm = dibenzoylmethane, Htta = thenoyltrifluoroacetone, Hhfac: hexafluoroacetylacetone) were easily assembled in mild conditions and high yields starting from the anhydrous lanthanide β-diketonates as nodes and 4,4′-bipyridine (bpy) as connector. X-ray single crystal studies have shown zigzag extended chains where lanthanide centres are 8-coordinated in a distorted square-antiprismatic geometry. Photoluminescence studies show bright red europium emission and spectral features dependent on the topology of the polymeric chains

    Ferroelectric order driven Eu3+ photoluminescence in BaZrxTi1−xO3 perovskite

    Get PDF
    The ability to tune and enhance the properties of luminescent materials is essential for enlarging their application potential. Recently, the modulation of the photoluminescence emission of lanthanide-doped ferroelectric perovskites by applying an electric field has been reported. Herein, we show that the ferroelectric order and, more generally the polar order, has a direct effect on the photoluminescence of Eu3+ in the model BaZrxTi1-xO3 perovskite even in the absence of an external field. The dipole arrangement evolves with increasing xfrom long-range ferroelectric order to short-range order typical of relaxors until the non-polar paraelectric BaZrO3 is achieved. The cooperative polar interactions existing in the lattice (x < 1) promote the off-center displacement of the Eu3+ ion determining a change of the lanthanide site symmetry and, consequently, an abrupt variation of the photoluminescence emission with temperature. Each type of polar order is characterized by a distinct photoluminescence behaviour

    An easily recoverable and recyclable homogeneous polyester-based Pd catalytic system for the hydrogenation of α,β-unsaturated carbonyl compounds

    Get PDF
    Homogeneous catalysis is an efficient tool to carry out hydrogenation processes but the major drawback is represented by the separation of the expensive catalyst from the product mixture. In this view we prepared a polyester-based Pd catalytic system that offers the advantages of both homogenous and heterogeneous catalyses: efficacy, selectivity and recyclability. Here its application in the hydrogenation of selected alpha,beta-unsaturated carbonyl compounds is described

    Oxide-oxide galvanic displacement reactions: Effect of the concentration of the ions released by the sacrificial oxide

    Get PDF
    Abstract Galvanic displacement reactions between a solid oxide and a dissolved metal cation are interesting processes for the preparation of oxide nanoparticles or electrocatalytic layers consisting of secondary mixed oxides. Their mechanism is not yet fully clarified. The composition of the secondary mixed oxides and their growth rate depend on many physical and chemical variables. In the present study, we have focused on the effects of the concentration of the ions released from the sacrificial oxide to the solution, when they are intentionally added to reaction media. We have studied the displacement of sacrificial PbO2 by either Mn2+ or Co2+ cations in acetate solution that contained variable concentrations of Pb2+, using electrochemical methods, SEM-EDS and XPS. The evolution of the open circuit potential of the systems was monitored during the reactions. We have found that, for both divalent cations, increasing concentrations of Pb2+ ions in the acetate solutions caused the formation of mixed oxides richer in Pb. Effects on growth rate and equilibrium potential were different for Mn2+ and Co2+

    New insights into the dynamics that control the activity of ceria-zirconia solid solutions in thermochemical water splitting cycles

    Get PDF
    The reactivity of a ceria-rich Ce0.85Zr0.15O2 solid solution toward the thermochemical water splitting process (TWS) was studied over repeated H2/H2O redox cycles. The structural and surface modifications after treatment at high temperature under air or N2 atmospheres were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and positron annihilation lifetime spectroscopy (PALS). Samples treated under nitrogen resulted more active due to phase segregation with formation of a zirconyl oxynitride phase in catalytic amount. Insertion of N3- into the structure contributes to an increase in the numbers of oxygen vacancies that preferably arrange in large clusters, and to the stabilization of Ce3+ centers on the surface. In comparison, treatment under air resulted in a different arrangement of defects with less Ce3+ and smaller and more numerous vacancy clusters. This affects charge transfer and H-coupling processes, which play an important role in boosting the rate of H2 production. The behavior is found to be only slightly dependent on the starting ceria-zirconia composition, and it is related to the development of a similar surface heterostructure configuration, characterized by the presence of at least a ceria-rich solid solution and a (cerium-doped) zirconyl oxynitride phase, which is supposed to act as a promoter for TWS reaction. The above findings confirm the importance of a multiphase structure in the design of ceria-zirconia oxides for water splitting reaction and allow a step forward to find an optimal composition. Moreover, the results indicate that doping with nitrogen might be a novel approach for the design of robust, thermally resistant, and redox active materials.Postprint (author's final draft
    • …
    corecore