474 research outputs found

    Fabrication and characterization of flexible spray-coated antennas

    Get PDF
    This paper investigates the potential of using spray coating as a methodology for flexible antenna fabrication. The methodology has advantages compared with other antenna-printing techniques, such as screen-printing and gravure printing (more flexibility in design), or inkjet printing (faster production). The methodology is demonstrated using two different types of folded dipole antennas that are designed to operate in the ultra-high frequency radio-frequency identification (UHF RFID) band. Both antennas show good agreement between simulation and measurement of the spray-coated samples in terms of power reflection coefficient and gain. The two folded dipoles, with and without ground plane, show comparable performance in terms of gain, as similar antennas found in literature. The folded dipole on a ground plane is more stable near conductive surfaces and on the human body. Given these results, we conclude that spray coating is a good technique for printing small to medium sized batches of antennas

    An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-Inspired High-Dimensional Classifier

    Full text link
    EMG-based gesture recognition shows promise for human-machine interaction. Systems are often afflicted by signal and electrode variability which degrades performance over time. We present an end-to-end system combating this variability using a large-area, high-density sensor array and a robust classification algorithm. EMG electrodes are fabricated on a flexible substrate and interfaced to a custom wireless device for 64-channel signal acquisition and streaming. We use brain-inspired high-dimensional (HD) computing for processing EMG features in one-shot learning. The HD algorithm is tolerant to noise and electrode misplacement and can quickly learn from few gestures without gradient descent or back-propagation. We achieve an average classification accuracy of 96.64% for five gestures, with only 7% degradation when training and testing across different days. Our system maintains this accuracy when trained with only three trials of gestures; it also demonstrates comparable accuracy with the state-of-the-art when trained with one trial

    Membrane particles from mesenchymal stromal cells reduce the expression of fibrotic markers on pulmonary cells

    Get PDF
    Background: Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with limited treatment options in which the telomere shortening is a strong predictive factor of poor prognosis. Mesenchymal stromal cells (MSC) administration is probed in several experimental induced lung pathologies; however, MSC might stimulate fibrotic processes. A therapy that avoids MSC side effects of transformation would be an alternative to the use of living cells. Membranes particles (MP) are nanovesicles artificially generated from the membranes of MSC containing active enzymes involved in ECM regeneration. We aimed to investigate the anti-fibrotic role of MP derived from MSC in an in vitro model of pulmonary fibrosis. Methods: Epithelial cells (A549) and lung fibroblasts, from IPF patients with different telomere length, were co-cultured with MP and TGF-β for 48h and gene expression of major pro-fibrotic markers were analyzed. Results: About 90% of both types of cells effectively took up MP without cytotoxic effects. MP decreased the expression of profibrotic proteins such as Col1A1, Fibronectin and PAI-1, in A549 cells. In fibroblasts culture, there was a different response in the inhibitory effect of MP on some pro-fibrotic markers when comparing fibroblast from normal telomere length patients (FN) versus short telomere length (FS), but both types showed an inhibition of Col1A1, Tenascin-c, PAI-1 and MMP-1 gene expression after MP treatment

    Transformaciones de haz mediante microlentes selfoc activas

    Get PDF
    [EN]: In this paper light propagation in an active selfoc microlens with complex refractive index and gradient parameter are examined. The ray-transfer matrix of an active material regarded as a diffraction-free first order optical system is presented to describe the beam transformations in active selfoc microlenses. Results concerning Gaussian beam transformationsand on-axis irradiance through the active selfoc microlens are discussed and commented. © Sociedad Española de Óptica.[ES]: En este trabajo se estudia la propagación de la luz a través de una microlente selfoc activa con un índice de refracción y parámetro de gradiente complejos. La matriz de transferencia de rayos, vista como un sistema óptico de primer orden libre de efectos de difracción, es introducida para describir las transformaciones que puede sufrir un haz en microlentes selfoc activas. Por último se presentan y comentan los resultados correspondientes a las transformaciones de haces Gaussianos y a la irradiancia en eje a través de la microlente selfoc activa.This work has been sponsored by Xunta de Galicia/Feder (INCITE08PXIB206013PR), Ministerio de Ciencia e Innovación (MAT2010-18519) and CDTI (SURFALUX SOL-00030930), Spain. Besides, Ana I. Gomez-Varela wants to acknowledge the financial support from the FPU (Formación de Profesorado Universitario) grant 2009 (Ministerio de Educación, Spain).Peer Reviewe

    Inhibiting the Plasmodium eIF2α Kinase PK4 Prevents Artemisinin-Induced Latency

    Get PDF
    Artemisinin and its derivatives (ARTs) are frontline antimalarial drugs. However, ART monotherapy is associated with a high frequency of recrudescent infection, resulting in treatment failure. A subset of parasites is thought to undergo ART-induced latency, but the mechanisms remain unknown. Here, we report that ART treatment results in phosphorylation of the parasite eukaryotic initiation factor-2α (eIF2α), leading to repression of general translation and latency induction. Enhanced phosphorylated eIF2α correlates with high rates of recrudescence following ART, and inhibiting eIF2α dephosphorylation renders parasites less sensitive to ART treatment. ART-induced eIF2α phosphorylation is mediated by the Plasmodium eIF2α kinase, PK4. Overexpression of a PK4 dominant-negative or pharmacological inhibition of PK4 blocks parasites from entering latency and abolishes recrudescence after ART treatment of infected mice. These results show that translational control underlies ART-induced latency and that interference with this stress response may resolve the clinical problem of recrudescent infection

    Optimización del Proceso de Separación de Gases por Membranas

    Get PDF
    Este trabajo trata sobre la optimización del diseño del proceso de captura de CO2 por membranas a partir de gases generados en una planta de combustión de carbón. Diferentes configuraciones alternativas son embebidas simultáneamente en una superestructura a partir de la cual se deriva el modelo matemático que permite determinar la configuración óptima del proceso de separación, el área de membrana y consumo de potencia en cada etapa, y las correspondientes condiciones de operación. Precisamente, se propone minimizar el área total de membrana, adoptando como metas de diseño una recuperación de CO2 del 85.00% y pureza de 98.00% en la corriente enriquecida de CO2. Dicho problema se resolverá para dos tipos de flujos: contra-corriente y co-corriente. Las soluciones óptimas obtenidas para cada tipo de flujo son analizadas y comparadas en términos de la distribución de áreas, flujos, composiciones y la contribución individual de cada compresor al consumo total de potencia
    corecore