404 research outputs found

    Assessing the variation in the load that produces maximal upper-body power

    Get PDF
    Substantial variation in the load that produces maximal power has been reported. It has been suggested that the variation observed may be due to differences in subject physical characteristics. Therefore the aim of this study was to determine the extent in which anthropometric measures correlate to the load that produces maximal power. Anthropometric measures (upper-arm length, forearm length, total arm length, upper-arm girth) and bench press strength were assessed in 26 professional rugby union players. Peak power was then determined in the bench press throw exercise using loads of 20 to 60% of one repetition maximum (1RM) in the bench press exercise. Maximal power occurred at 30 +/- 14 %1RM (mean +/- SD). Upper-arm length had the highest correlation with the load maximizing power: -0.61 (90% confidence limits -0.35 to -0.78), implying loads of 22 vs. 38 %1RM maximize power for players with typically long vs. short upper-arm length. Correlations for forearm length, total arm length and upper-arm girth to the load that maximized power were -0.29 (0.04 to -0.57), -0.56 (-0.28 to -0.75), and -0.29 (0.04 to -0.57), respectively. The relationship between 1RM and the load that produced maximal power was r = -0.23 (0.10 to -0.52). The between-subject variation in the load that maximised power observed (SD= +/- 14 %1RM) may have been due to differences in anthropometric characteristics, and absolute strength and power outputs. Indeed, athletes with longer limbs and larger girths, and greater maximal strength and power outputs utilised a lower percentage of 1RM loads to achieve maximum power. Therefore, we recommend individual assessment of the load that maximizes power output

    Assessing lower-body peak power in elite rugby-union players

    Get PDF

    Reliability of a 2-Bout exercise test on a Wattbike cycle ergometer

    Get PDF
    Purpose: To determine the intraday and interday reliability of a 2 × 4-min performance test on a cycle ergometer (Wattbike) separated by 30 min of passive recovery (2 × 4MMP). Methods: Twelve highly trained cyclists (mean ± SD; age = 20 ± 2 y, predicted VO2max = 59.0 ± 3.6 mL · kg–1 · min–1) completed six 2 × 4MMP cycling tests on a Wattbike ergometer separated by 7 d. Mean power was measured to determine intraday (test 1 [T1] to test 2 [T2]) and interday reliability (weeks 1–6) over the repeated trials. Results: The mean intraday reliabilities of the 2 × 4MMP test, as expressed by the typical error of measurement (TEM, W) and coefficient of variation (CV, %) over the 6 wk, were 10.0 W (95% confidence limits [CL] 8.2–11.8), and 2.6% (95%CL 2.1–3.1), respectively. The mean interday reliability TEM and CV for T1 over the 6 wk were 10.4 W (95%CL 8.7–13.3) and 2.7% (95%CL 2.3–3.5), respectively, and 11.7 W (95%CL 9.8–15.1) and 3.0% (95%CL 2.5–3.9) for T2. Conclusion: The testing protocol performed on a Wattbike cycle ergometer in the current study is reproducible in highly trained cyclists. The high intraday and interday reliability make it a reliable method for monitoring cycling performance and for investigating factors that affect performance in cycling events

    Production of Triply Charmed Ωccc\Omega_{ccc} Baryons in e+e−e^+e^- Annihilation

    Full text link
    The total and differential cross sections for the production of triply charmed Ωccc\Omega_{ccc} baryons in e+e−e^{+}e^{-} annihilation are calculated at the ZZ-boson pole.Comment: 13 pages, 2 figure

    Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault

    Get PDF
    The Hayward fault in the San Francisco Bay Area (SFBA) is sometimes considered unusual among continental faults for exhibiting significant aseismic creep during the interseismic phase of the seismic cycle while also generating sufficient elastic strain to produce major earthquakes. Imaging the spatial variation in interseismic fault creep on the Hayward fault is complicated because of the interseismic strain accumulation associated with nearby faults in the SFBA, where the relative motion between the Pacific plate and the Sierra block is partitioned across closely spaced subparallel faults. To estimate spatially variable creep on the Hayward fault, we interpret geodetic observations with a three-dimensional kinematically consistent block model of the SFBA fault system. Resolution tests reveal that creep rate variations with a length scale of \u3c15 km are poorly resolved below 7 km depth. In addition, creep at depth may be sensitive to assumptions about the kinematic consistency of fault slip rate models. Differential microplate motions result in a slip rate of 6.7 ± 0.8 mm/yr on the Hayward fault, and we image along-strike variations in slip deficit rate at ∌15 km length scales shallower than 7 km depth. Similar to previous studies, we identify a strongly coupled asperity with a slip deficit rate of up to 4 mm/yr on the central Hayward fault that is spatially correlated with the mapped surface trace of the 1868 MW = 6.9–7.0 Hayward earthquake and adjacent to gabbroic fault surfaces

    Accelerating slip rates on the Puente Hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

    Get PDF
    Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for probabilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accelerated from ∌0.22 mm/yr in the late Pleistocene to ∌1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199
    • 

    corecore