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ABSTRACT 

Resistance training at the load that maximizes peak power (Pmax) may produce greater increases 

in peak power than other loads. Pmax for lower-body lifts can occur with no loading, but 

whether Pmax can be increased further with negative loading is unclear. The purpose of this 

investigation was therefore to determine lower-body Pmax (jump squat) using a spectrum of 

loads reps? . Box squat 1RM was measured in 26 elite rugby-union players. Pmax was then 

determined using loads of -28 to 60 %1RM. Elastic bands were used to unload body weight for 

negative loads. Jump-squat Pmax occurred with no loading (bodyweight) in all but two subjects. 

There was a discontinuity in the power-load relationship for the jump squat, possibly due to the 

increased counter-movement in the bodyweight jump. These findings highlight methodological 

issues that need to be taken into consideration when comparing power outputs of loaded and 

unloaded jumps.  

 Key words: ELITE ATHLETES, JUMP SQUAT, POWER PROFILE. 
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INTRODUCTION 

Rugby union is a competitive sport which requires high levels of muscular power. As such, 

training methods that enhance muscular power are of extreme importance for the physical 

preparation in these athletes. The load that maximizes peak power (Pmax) has been discussed for 

more than 20 years and has been suggested to enhance power and performance in explosive 

exercise (4, 19, 25). It has been proposed that training at the load that maximizes power may 

provide favourable neural and muscular adaptations (19, 25, 29).    

 

To accurately determine the effects of training at Pmax, Pmax must be firstly identified. 

However, large variations in the load that produces Pmax have been reported (2-4, 8, 10, 15, 16, 

19). Traditionally, findings suggest that Pmax is typically expressed at loads ranging from 30% 

to 70% of maximum strength (3, 4, 16). More recently, some studies have reported that Pmax 

occurs at loads less than 30% of maximal strength (8, 10). The large between-study variation in 

Pmax appears to be due to differences in exercise performed, methods used to assess power, and 

participants recruited (12). As such, using a Pmax load from the literature in the overall power 

training program of your athletes may not match their Pmax load, thereby producing a sub-

optimal loading and response. 

 

To accurately quantify Pmax, power outputs across multiple loads need to be investigated. 

Recently, researchers have reported that vertical jump Pmax occurred when using bodyweight 

only (8, 10). However, power was not assessed at loads less than bodyweight.  As such, whether 

Pmax can be increased further with negative loading is unclear. A novel approach to assess 
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bodyweight at negative loads is with the use of elastic bands that may be attached in a manner 

which provides upward tension, thereby reducing the effective bodyweight of the subject.  

 

Another methodological issue is that many investigations have assessed Pmax using single 

efforts (repetitions) at each load (8, 9, 11, 15, 16), whereas power training typically consists of 

performing sets of three to five consecutive repetitions (5). Furthermore, recent literature has 

revealed that power is not maximised until the second or third repetition of a set (6). If the 

overall aim is to train at Pmax (using consecutive repetitions); then Pmax should be assessed in 

the same manner. To date only Baker and colleagues (2-4) have assessed Pmax in a training 

environment performing multiple consecutive repetitions and reported that Pmax occurred 

between 40-70% of maximum strength. Finally, the experience level (or training history) of 

subjects assessed may produce variation in the findings. Baker (2) reported that stronger athletes 

may produce Pmax at lower intensities than weaker athletes. Therefore to make accurate 

comparison between investigations, subjects need to be of similar strength levels.  

 

Elite rugby union athletes typically have high levels of strength and regularly perform resistance 

training with multiple sets and consecutive repetitions. If methodology issues have an effect on 

the load that maximises peak power, then specific population assessment needs to occur to 

accurately identify Pmax. Determining Pmax in this population will provide athletes with 

specific training intensities that allow maximal peak power to be achieved during training, which 

in turn may lead to enhanced performance gains (19, 25, 29).    
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Therefore, the purpose of this investigation was to determine lower-body Pmax in elite rugby 

union players. Points of difference from most if not all previous investigations included the 

assessment of Pmax loads at negative through to positive loads and the performance of multiple 

consecutive repetitions at each load.  

 

METHODS 

Experimental Approach to the Problem do you still need refs to bench (ref 3 and 5 I 

think?) 

In order to more accurately quantify Pmax in terms of how it is commonly applied to training 

programs, elite rugby union subjects were assessed for lower-body maximal strength and power 

(via a spectrum of loads including negative loading) across four separate sessions, with each 

session separated by 24 hours (Table 1). Multiple repetitions were performed in each set (one set 

of four repetitions at each load) to be more representative of a typical training session. Peak 

power was selected as the dependent measure as it has been reported to have the greatest 

association with athletic performance (14). Power was assessed using the jump squat exercise 

due to its common usage in power training programs and research studies and its ability to 

represent lower-body power (1, 4).  

 

Insert Table 1 about here 

 

Subjects 

Eighteen elite rugby union players from a Super 14 professional rugby team during the pre-

season phase of their campaign volunteered to take part in this study (mean ± SD; age, 23.8 ± 2.2 
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years; height, 185.8 ± 6 cm; mass, 103.8 ± 10.6 kg). Each subject had undergone at least two 

years of intensive and regular resistance training exercise, and must have been competing in a 

prior national or international rugby competition to be included in this study. Subjects were 

informed of the experimental risks and signed an informed consent document prior to the 

investigation. The investigation was approved by an Institutional Review Board for use of 

Human subjects (Auckland University of Technology Ethics Committee). Four subjects were 

unable to attend session two due to unforeseen circumstances. 

 

Procedures 

Strength  

Maximal strength was assessed using the box squat exercise using methods previously outlined 

(1). Briefly, following three sub-maximal sets of box squat, each athlete then performed one set 

to failure of one to four repetitions. Participants used a self-selected foot position and were 

required to lower themselves to a sitting position briefly on the box and then return to a standing 

position. The box height was adjusted for each athlete to allow the top of the thighs to be parallel 

to the floor while in the seated position. The box squat was performed using free weights. Three 

minutes rest was allowed between each set. Each set to failure was used to predict the athletes’ 

one repetition maximum (1RM). 

 

The following equation was used to predict box squat 1RM (21). This equation is a valid 

measure of 1RM strength as it has been show to have a correlation between actual and predicted 

1RM of r=0.969 (22): 

1RM  = (100 x weight)/(101.3-(2.67123 x reps))  
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Jump Squat 

Lower-body power was assessed using a jump squat exercise performed in a Smith machine. 

Subjects warmed up with two sets of four repetitions lowering the bar to a 90° knee angle using a 

load of 50% of their 1RM box squat. Subjects then completed one set of four repetitions of jump 

squats at -28% (± 5%), -15% (± 3%), 0% (bodyweight), 20%, 30%, 40%, 50% or 60% 1RM box 

squat. Subjects used a self selected foot position and lowered the bar to a self selected depth 

during these performance tests. Subjects were then required to jump as explosively as possible 

trying to jump as high as they could (1). Three minutes rest was allowed between each set. The 

bodyweight jump was assessed using a broomstick which was placed behind the neck and on the 

top of the shoulders. The -28% (± 5%) and -15% (± 3%) jump squats were an assisted jump, 

performed in a squat cage wearing a climber’s harness with an elastic band (Iron Woody LLC, 

Olney MT, USA) attached to either side of the harness (at the hip level), with the other end 

attached above the participant to the top of the squat cage. Two thicknesses of elastic bands were 

used. The elastic bands provided vertical tension which reduced the body weight of each 

participant when the participant was in a standing position with hip and knee fully extended. The 

reduction in weight was assessed by having subjects stand on scales with and without the 

attachment of the elastic bands.   

 

The power and displacement produced during each repetition was quantified with a Gymaware™ 

optical encoder (50 Hz sample period with no data smoothing or filtering; Kinetic Performance 

Technology, Canberra, Australia) using the methods described elsewhere (13). Quantification of 

the power produced included bodyweight and bar mass (system mass) in the calculation (14).  
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Statistical Analyses 

To estimate the load that maximized mechanical power output, a quadratic was fitted to each 

participant’s power output (in Watts) and load (% of 1RM). However, in all but two subjects, 

power at bodyweight was clearly above any quadratic curve fitted to the points (Figure 1). 

Additionally, for the four subjects that did not complete the assisted jumps, the quadratic curves 

all had positive curvature where theory predicts negative curvature. Therefore for all subjects we 

used the value observed at bodyweight for Pmax. Findings were discussed as means and standard 

deviations.   

 

Insert Figure 1 about here 

 

In addition to fitting a quadratic, standardised differences of the mean were used to assess 

magnitudes of effects between each individual load assessed by dividing the differences by 

the appropriate between-athlete standard deviation. Standardised changes of <0.20, <0.60, 

<1.2, <2.0 and >2.0 were interpreted as trivial, small, moderate, large and very large effects, 

respectively (7, 18). Lastly, displacement data were log-transformed to reduce non-uniformity of 

error, and the differences were derived by back transformation as percent changes (17). To make 

inferences about the true (large-sample) value of an effect, the uncertainty in the effects were 

expressed as 90% confidence limits.     

 

The interclass correlation (ICC) and coefficient of variation (CV) for box squat was r=0.915 and 

4.6%, respectively. The ICC’s and CV% for jump squat at 0% and 50% of 1RM box squat  were 
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0.834 and 4.2%, and 0.904 and 4.8%, respectively. All test-retest reliabilities were assessed 

seven days apart. Validity of the Gymaware™ optical encoder has been previously reported 

elsewhere (13). The sample size for this investigation was limited to the number of athletes in the 

squad. All athletes in the squad that were injury free were included and therefore no more 

athletes could be obtained.   

 

RESULTS 

The mean predicted 1RM box squat was 147.9 kg (± 26.8 kg). The greatest lower-body peak 

power was 8880 W (± 2186 W) and occurred at bodyweight (Figure 2). The peak power 

produced during the bodyweight jump was greater (moderate to large effect size) than that of all 

other intensities assessed. Sixteen out of the 18 subjects produced peak lower-body power at 

bodyweight (Figure 4). Due to the irregularity in the lower-body power results, whereby a 

quadratic could not be fitted to the points (see Statistical Analyses; Figure 1); we re-examined 

the GymAware™ data to gain some insight into the potential reasons underlying this result.  As 

the GymAware™ system is a linear position transducer, we started by examining the 

displacement data to ascertain whether differences in technique between the different jump 

intensities may have contributed to this finding.   

 

Analysis of the displacement data revealed that during the bodyweight jump, the self selected 

depth (dip) prior to the propulsive phase of the jump was greater by 24 ±11% to 40 ±16% 

(moderate to large effect size) than all positive loads. As the loads increased, the subjects 

continued to reduce the depth of their countermovement. Small differences in the 

countermovement depth ranging from 11% (±11%) to 17% (±14%) were observed between 20% 
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and 40%, 20% and 50%, and 20% and 60% 1RM box squat load. Additionally, small differences 

ranging from 7% (±9%) to 14% (±9%) were also observed between 30% and 50%, 30% and 

60%, and 40% and 60% 1RM box squat load.     

 

Insert Figure 2 about here 

 

DISCUSSION 

It has been hypothesized that training at Pmax is beneficial for increasing muscular power (4, 19, 

25). Therefore the purpose of this investigation was to determine lower-body Pmax in elite rugby 

union players. To the author’s knowledge, this was the first investigation that assessed Pmax 

using negative loads. By assessing power at negative loading we were able to identify a decline 

in power either side of the maximum power output which previous authors have not considered 

(8, 10). Peak lower-body power occurred with no loading (bodyweight) in all but two subjects. 

However, discontinuity in the power outputs of the lower-body was observed between 

bodyweight and all loaded jumps.  

 

An interesting phenomenon occurred when assessing lower-body power across this spectrum of 

negative and positive loads. In all but two of the subjects assessed, power with no loading was 

substantially higher than all other loads assessed and was clearly above any quadratic curve that 

was fitted to all the points (Figure 1). On closer observation there appeared to be discontinuity of 

the power outputs between bodyweight and all positive loads. Indeed negative and bodyweight 

loads appeared to have a different power-load relationship than the positive loads. As such, it 

may be that a separate quadratic needs to be fitted to each power-load relationship when loaded 
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and unloaded intensities are assessed. However, this would result in two Pmax intensities, one 

for training with unloaded jumps and the other for loaded jumps.  

 

The separate power-load relationships may suggest that something substantially affects power 

output when subjects jump with an additional load. We re-analysed the position data produced 

by Gymaware™ and found that during the bodyweight jump, the self selected depth (dip) prior 

to the propulsive phase of the jump was greater than all loaded jumps (24% - 40%). Furthermore, 

as the loads increased to a greater percent of 1RM there was a further reduction in the depth of 

the counter-movement.  As such, the disproportionally higher power output at bodyweight may 

be due to the larger dip used in this jump. The use of a greater dip with the bodyweight load may 

have afforded this jump some biomechanical advantages that contributed to the greater power 

outputs. The deeper countermovement would have increased the time to produce force. 

According to the impulse-momentum relationship, greater time to produce force would increase 

the amount of impulse (force multiplied by time) generated, which in turn would result in a 

greater change in the momentum (velocity) of the system (20).  Additionally, the greater dip 

would have increased the amount of stretch placed on the agonist musculature, and via the force-

length relationship allow greater forces to be generated  (26).   

 

The methodological concerns observed could be controlled by keeping the depth consistent for 

all jumps. However, what should the constant depth be? If it is too low, velocity of the 

movement may be compromised and there is chance of increasing the likelihood of injury when 

jumping with heavy loads. If it is not low enough, it may prevent an optimal combination of 

force and velocity reducing power output and defeating the purpose of assessing Pmax. 
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Additionally, how should depth be controlled? Cormie and colleagues (10) attempted to control 

depth by visually monitoring knee angle to a depth of 90°. However, Cormie and colleagues (10) 

still reported significant differences in depth between the different loading intensities.  Harris and 

colleagues (15) controlled depth by performing a concentric only jump squat starting at a fixed 

knee angle of 110°. However, what if the purpose of your training was to improve stretch 

shortening cycle and countermovement peak power? Young and colleagues (30) suggested that 

executing a countermovement at a self selected depth encouraged subjects to find their own 

optimum jumping conditions. Furthermore, as previously alluded to in the introduction, if the 

goal is to train at the Pmax load, Pmax needs to be assessed in the manner it is trained. For most 

athletes, they will train using a self selected depth.  

 

The discontinuity in jump technique (amount of dip) between each load makes determining 

Pmax for the lower-body problematic. If lower-body Pmax can not be accurately determined; 

then the contention that training at the load that maximises power may provide favourable neural 

and muscular adaptations (19, 25, 29) would appear somewhat problematic, at least for the 

lower-body.    

 

Lower-body peak power occurred at bodyweight, a finding similar to Cormie and colleagues (8) 

who reported that lower-body peak power occurred at bodyweight in well trained (football 

players, long jumpers and sprinters) (8) and untrained males (10). In contrast, Siegel and 

colleagues (27) reported that peak power occurred between 50% and 70% 1RM squat in 

untrained subjects, while Sleivert and Tainghue (28) reported that peak power occurred at 60% 

of 1RM squat in trained athletes.  The difference in findings is likely due to the inclusion or 
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exclusion of system mass (i.e. bar mass plus bodyweight) in the calculation of power. In the 

current investigation, and investigations by Cormie and colleagues (8, 10); all of which found 

peak power to occur at bodyweight, system mass was included in the calculation of power. 

Whereas the investigation by Sleivert and Taingahue (28) used bar mass only. Additionally, 

Siegel and colleagues (27) did not state that system mass was included in their calculations. This 

becomes extremely important when comparing findings as the inclusion or exclusion of 

bodyweight can cause a shift in peak power from 20% (system mass included) to 70% of 1RM 

(system mass excluded) (14). Therefore the higher Pmax observed in the two investigations may 

be artificially high due to the exclusion of system mass from the calculation.  

 

Heavy strength training and/or high velocity training has been shown to be effective in 

improving explosive performance in some studies (19, 23, 24). However, it has been suggested 

that training at Pmax may enhance power and performance in explosive exercise more so than 

heavy strength and/or high velocity training (4, 19, 25). It should be noted that there is only a 

limited and equivocal literature involving the comparisons of training at Pmax vs. heavier and/or 

lighter loads, and as such the load that maximises performance adaptation is still somewhat 

unknown. 

 

The load that maximizes peak power may be influenced by several factors including the 

spectrum of loads assessed and whether comparisons are made between loaded and unloaded 

conditions. Additionally, data calculation and reporting methods (i.e. inclusion or exclusion of 

bodyweight) may influence Pmax. 

 



JSCR-08-371 Assessing lower-body power. 15 

 
PRACTICAL APPLICATIONS 

Lower-body Pmax occurred at bodyweight in all but two subjects, however results indicated 

there was a discontinuity between loaded and unloaded jumps. As such lower-body current Pmax 

assessment procedures may be flawed due to the inability to accurately determine the load that 

maximises peak power. Methods that can assess and improve lower-body power in a training 

environment need to be developed. We suggest assessment using a range of heavy and lighter 

intensities for each individual in each exercise, in a manner similar to how he or she trains.  This 

will increase external validity and possibly result in a greater likelihood of enhanced peak power 

or training adaptations. 

 

REFERENCES 
1. ARGUS, CK, GILL, ND, KEOGH, JWL, HOPKINS, WG, and BEAVEN, CM. Changes 

in strength, power and steroid hormones during a professional rugby union competition. J 
Strength Cond Res 23:1583-1592. 2009. 

2. BAKER, D. A series of studies on the training of high-intensity muscle power in rugby 
league football players. J Strength Cond Res 15:198-209. 2001. 

3. BAKER, D, NANCE, S, and MOORE, M. The load that maximizes the average 
mechanical power output during explosive bench press throws in highly trained athletes. 
J Strength Cond Res 15:20-24. 2001. 

4. BAKER, D, NANCE, S, and MOORE, M. The load that maximizes the average 
mechanical power output during jump squats in power-trained athletes. J Strength Cond 
Res 15:92-97. 2001. 

5. BAKER, D and NEWTON, RU. Methods to increase the effectiveness of maximal power 
training for the upper body. Strength Cond J 27:24. 2005. 

6. BAKER, DG and NEWTON, RU. Change in power output across a high-repetition set of 
bench throws and jump squats in highly trained athletes. J Strength Cond Res 21:1007-
1011. 2007. 

7. BATTERHAM, AM and HOPKINS, WG. Making meaningful inferences about 
magnitudes. Int J Sports Physiol Perfom 1:50-57. 2006. 

8. CORMIE, P, GRANT, OM, TRIPLETT, NT, and MCBRIDE, JM. Optimal loading for 
maximal power output during lower-body resistance exercises. Med Sci Sport Exercise 
39:340-349. 2007. 

9. CORMIE, P, MCBRIDE, JM, and MCCAULLEY, GO. The influence of body mass on 
calculation of power during lower-body resistance exercises. J Strength Cond Res 
21:1042-1049. 2007. 



JSCR-08-371 Assessing lower-body power. 16 

 
10. CORMIE, P, MCBRIDE, JM, and MCCAULLEY, GO. Power-time, force-time, and 

velocity-time curve analysis during the jump squat: Impact of load. J Appl Biomech 
24:112-120. 2008. 

11. CRONIN, J, MCNAIR, PJ, and MARSHALL, RN. Developing explosive power: a 
comparison of technique and training. J Sci Med Sport 4:59-70. 2001. 

12. CRONIN, J and SLEIVERT, G. Challenges in understanding the influence of maximal 
power training on improving athletic performance. Sport Med 35:213-234. 2005. 

13. DRINKWATER, EJ, GALNA, B, MCKENNA, MJ, HUNT, PH, and PYNE, DB. 
Validation of an optical encoder during free weight resistance movements and analysis of 
bench press sticking point power during fatigue. J Strength Cond Res 21:510-517. 2007. 

14. DUGAN, EL, DOYLE, TLA, HUMPHRIES, B, HASSON, CJ, and NEWTON, RU. 
Determining the optimal load for jump squats: A review of methods and calculations. J 
Strength Cond Res 18:668-674. 2004. 

15. HARRIS, NK, CRONIN, JB, and HOPKINS, WG. Power outputs of a machine squat-
jump across a spectrum of loads. J Strength Cond Res 21:1260-1264. 2007. 

16. HARRIS, NK, CRONIN, JB, HOPKINS, WG, and HANSEN, KT. Squat jump training at 
maximal power loads vs. heavy loads: effect on sprint ability. J Strength Cond Res 
22:1742-1749. 2008. 

17. HOPKINS, WG. Spreadsheets for analysis of controlled trials with adjustment for a 
predictor. Sportscience 10 (sportsci.org/2006/wghcontrial.htm) 2006. 

18. HOPKINS, WG, MARSHALL, SW, BATTERHAM, AM, and HANIN, J. Progressive 
statistics for studies in sports medicine and exercise science. Med Sci Sport Exercise 
41:3-12. 2009. 

19. KANEKO, M, FUCHIMOTO, T, TOJI, H, and SUEI, K. Training effect of different 
loads on the force-velocity relationship and mechanical power output in human muscle. 
Scand J Sports Sci 5:50-55. 1983. 

20. KREIGHBAUM, E and BARTHELS, K, eds. Linear momentum and kinetic energy. 
Biomechanics. A qualitative approach for studying human movement, ed. E. Kreighbaum 
and K. Barthels. 1996, Allyn and Bacon: Needhham Heights, MA. 290-299. 

21. LANDER, J. Maximums based on reps. Natl Str Cond Assoc 6:60-61. 1985. 
22. LESUER, DA, MCCORMICK, JH, MAYHEW, JL, WASSERSTEIN, RL, and 

ARNOLD, MD. The accuracy of prediction equations for estimating 1-RM performance 
in the bench press, squat, and deadlift. J Strength Cond Res 11:211-213. 1997. 

23. MANGINE, GT, RATAMESS, NA, HOFFMAN, JR, FAIGENBAUM, AD, KANG, J, 
and CHILAKOS, A. The effects of combined ballistic and heavy resistance training on 
maximal lower- and upper-body strength in recreationally trained men. J Strength Cond 
Res 22:132-139. 2008. 

24. MCBRIDE, JM, TRIPLETT-MCBRIDE, T, DAVIE, A, and NEWTON, RU. The effect 
of heavy- vs. light-load jump squats on the development of strength, power, and speed. J 
Strength Cond Res 16:75-82. 2002. 

25. NEWTON, RU and KRAEMER, WJ. Developing explosive muscular power: 
Implications for a mixed methods training strategy. Strength Cond 16:20-31. 1994. 

26. SCHACHAR, R, HERZOG, W, and LEONARD, TR. Force enhancement above the 
initial isometric force on the descending limb of the force-length relationship. J Biomech 
35:1299. 2002. 



JSCR-08-371 Assessing lower-body power. 17 

 
27. SIEGEL, JA, GILDERS, RM, STARON, RS, and HAGERMAN, FC. Human muscle 

power output during upper- and lower-body exercises. J Strength Cond Res 16:173-178. 
2002. 

28. SLEIVERT, G and TAINGAHUE, M. The relationship between maximal jump-squat 
power and sprint acceleration in athletes. Eur J Appl Physiol 91:46-52. 2004. 

29. WILSON, GJ, NEWTON, RU, MURPHY, AJ, and HUMPHRIES, BJ. The optimal 
training load for the development of dynamic athletic performance. Med Sci Sport 
Exercise 25:1279-1286. 1993. 

30. YOUNG, WB, JENNER, A, and GRIFFITHS, K. Acute enhancement of power 
performance from heavy load squats. J Strength Cond Res 12:82-84. 1998. 

 
 
 

 

ACKNOWLEDGEMENTS 

The Waikato Rugby Union and the Tertiary Education Commission provided finical support by 

the way of scholarship for the primary author. The results of the present study do not constitute 

endorsement by the NSCA. 

 



JSCR-08-371 Assessing lower-body power. 18 

 
Figure Legends 

Figure 1. Examples from three different subjects of quadratics fitted to power outputs at different 

intensities. The data point on the vertical axis represents bodyweight. A, example of best fit. B, 

example of typical fit. C, example of worst fit. 

 

Figure 2. Jump squat peak power at a spectrum of intensities in elite rugby union players. RM, 

Repetition maximum. n = 20. #, denotes moderate to large differences (effect size) between 0% 

and all other loads. 
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Figure 1. Examples from three different subjects of quadratics fitted to power outputs at different intensities. 

The data point on the vertical axis represents bodyweight. A, example of best fit. B, example of typical fit. C, 

example of worst fit. 
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Figure 2. Jump squat peak power at a spectrum of intensities in elite rugby union players. RM, Repetition 

maximum. n = 20. #, denotes moderate to large differences (effect size) between 0% and all other loads.  
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Table 1. Order and outline of strength and power assessments. 

Order Mode Exercise Load 

Session One Lower-body strength Box squat Maximal 

Session Two Lower-body power Jump squat -28%, -15% 1RM box squat  

Session Three Lower-body power Jump squat 0%, 20%, 30% 1RM box squat 

Session Four Lower-body power Jump Squat 40%, 50%, 60% 1RM box squat 

RM, Repetition maximum. Twenty four hours separated each session. 

 


