318 research outputs found
Evaluating trifluridine + tipiracil hydrochloride in a fixed combination (TAS-102) for the treatment of colorectal cancer
Introduction: Despite major progress in treating advanced colorectal cancer (CRC), prognosis in this population after progression on standard treatment remains dismal and the development of new drugs represents an unmet need. Historically, fluoropyrimidines have played a major role in the treatment of metastatic CRC. TAS-102, a novel combination of trifluridine and tipiracil hydrochloride, has demonstrated improvement in overall survival in the refractory CRC setting, with a safe toxicity profile. Areas covered: A literature review of published clinical studies was performed. Herein, the authors review the pharmacological and clinical data of TAS-102 when used in metastatic CRC, both as a single agent as well as in novel combinations under investigation. Expert opinion: The addition of TAS-102 to the therapeutic armamentarium of metastatic CRC is an encouraging breakthrough considering the demonstrated survival benefit and favorable tolerability profile. Combinations with other agents are under clinical investigation in different settings in an attempt to widen its use. To optimize treatment in today’s era of molecular oncology, efforts should be focused on understanding primary and secondary resistance mechanisms, along with the identification of potential biomarkers of response
Autophagy Exacerbates Muscle Wasting in Cancer Cachexia and Impairs Mitochondrial Function
Cancer cachexia is a multifactorial syndrome characterized by anorexia, weight loss and muscle wasting that impairs patients' quality of life and survival. Aim of this work was to evaluate the impact of either autophagy inhibition (knocking-down beclin-1) or promotion (overexpressing TP53INP2/DOR) on cancer-induced muscle wasting. In C26 tumor-bearing mice, stress-induced autophagy inhibition was unable to rescue the loss of muscle mass and worsened muscle morphology. Treating C26-bearing mice with formoterol, a selective β2-agonist, muscle sparing was paralleled by reduced static autophagy markers although the flux was maintained. Conversely, the stimulation of muscle autophagy exacerbated muscle atrophy in tumor-bearing mice. TP53INP2 further promoted atrogene expression and suppressed mitochondrial dynamics-related genes. Excessive autophagy might impair mitochondrial function through mitophagy. Consistently, tumor-induced mitochondrial dysfunction was detected by reduced ex vivo muscle fiber respiration. Overall, the results evoke a central role for muscle autophagy in cancer-induced muscle wasting
Beneficial immune modulatory effects of a specific nutritional combination in a murine model for cancer cachexia
The majority of patients with advanced cancer are recognised by impaired immune competence influenced by several factors, including the type and stage of the tumour and the presence of cachexia. Recently, a specific nutritional combination containing fish oil, specific oligosaccharide mixture, high protein content and leucine has been developed aimed to support the immune system of cancer patients in order to reduce the frequency and severity of (infectious) complications. In a recently modified animal model cachexia is induced by inoculation of C26 tumour cells in mice. In a pre-cachectic state, no effect was observed on contact hypersensitivity, a validated in vivo method to measure Th1-mediated immune function, after adding the individual nutritional ingredients to the diet of tumour-bearing mice. However, the complete mixture resulted in significantly improved Th1 immunity. Moreover, in a cachectic state, the complete mixture reduced plasma levels of pro-inflammatory cytokines and beneficially affected ex vivo immune function. Accordingly, the combination of the nutritional ingredients is required to obtain a synergistic effect, leading to a reduced inflammatory state and improved immune competence. From this, it can be concluded that the specific nutritional combination has potential as immune-supporting nutritional intervention to reduce the risk of (infectious) complications in cancer patients
Distinct Mechanisms for Induction and Tolerance Regulate the Immediate Early Genes Encoding Interleukin 1β and Tumor Necrosis Factor α
Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators. © 2013 Adamik et al
Body Composition, Symptoms, and Survival in Advanced Cancer Patients Referred to a Phase I Service
Background: Body weight and body composition are relevant to the outcomes of cancer and antineoplastic therapy. However, their role in Phase I clinical trial patients is unknown. Methods: We reviewed symptom burden, body composition, and survival in 104 patients with advanced cancer referred to a Phase I oncology service. Symptom burden was analyzed using the MD Anderson Symptom Assessment Inventory(MDASI); body composition was evaluated utilizing computerized tomography(CT) images. A body mass index (BMI)25 kg/m 2. Sarcopenic patients were older and less frequently African-American. Symptom burden did not differ among patients classified according to BMI and presence of sarcopenia. Median (95% confidence interval) survival (days) varied according to body composition: 215 (71–358) (BMI,25 kg/m 2; sarcopenic), 271 (99–443) (BMI,25 kg/m 2; non-sarcopenic), 484 (286–681) (BMI25 kg/m 2; non-sarcopenic). Higher muscle index and gastrointestinal cancer diagnosis predicted longer survival in multivariate analysis after controlling for age, gender, performance status, and fat index. Conclusions: Patients referred to a Phase I clinic had a high frequency of sarcopenia and a BMI$25 kg/m 2, independent o
DNA damage in children and adolescents with cardiovascular disease risk factors
The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) assays in leukocytes. A total of 34 children and adolescents selected from a population sample were divided into three groups according to their level of CVD risk. Moderate and high CVD risk subjects showed significantly higher body fat and serum CVD risk markers than low risk subjects (PO risco de desenvolver doença cardiovascular (DCV) está relacionado ao estilo de vida (por exemplo, dieta, atividade física e tabagismo), bem como a fatores genéticos. Este estudo teve como objetivo avaliar a associação entre fatores de risco cardiovascular e os níveis de danos ao DNA em crianças e adolescentes. Antropometria, dieta e fatores de risco para DCV foram avaliados através de procedimentos padrão. Níveis de danos no DNA foram avaliados através do ensaio cometa (eletroforese de célula única; EC) e do teste de micronúcleos em leucócitos. Um total de 34 crianças e adolescentes, selecionados a partir de uma amostra populacional, foram divididos em três grupos, de acordo com seu nível de risco de DCV. Indivíduos com níveis moderado e alto risco para DCV apresentaram de forma significativa maiores níveis de gordura corporal e de marcadores séricos de risco cardiovascular que indivíduos de baixo risco (P <0,05). Indivíduos de alto risco também mostraram um aumento significativo de danos ao DNA, de acordo com o EC, mas não de acordo com o teste de micronúcleos, do que indivíduos de risco baixo e moderado. A vitamina C consumida foi inversamente correlacionada com os danos ao DNA avaliados pelo EC, e o número de micronúcleos foi inversamente correlacionado com a ingestão de ácido fólico. Os resultados obtidos indicam um aumento de danos no DNA que pode ser consequente do estresse oxidativo em indivíduos jovens com fatores de risco para DCV, indicando que o nível de danos no DNA pode auxiliar na avaliação do risco de DCV
Establishing a clinical phenotype for cachexia in end stage kidney disease - study protocol.
BACKGROUND: Surveys using traditional measures of nutritional status indicate that muscle wasting is common among persons with end-stage kidney disease (ESKD). Up to 75% of adults undergoing maintenance dialysis show some evidence of muscle wasting. ESKD is associated with an increase in inflammatory cytokines and can result in cachexia, with the loss of muscle and fat stores. At present, only limited data are available on the classification of wasting experienced by persons with ESKD. Individuals with ESKD often exhibit symptoms of anorexia, loss of lean muscle mass and altered energy expenditure. These symptoms are consistent with the syndrome of cachexia observed in other chronic diseases, such as cancer, heart failure, and acquired immune deficiency syndrome. While definitions of cachexia have been developed for some diseases, such as cardiac failure and cancer, no specific cachexia definition has been established for chronic kidney disease. The importance of developing a definition of cachexia in a population with ESKD is underscored by the negative impact that symptoms of cachexia have on quality of life and the association of cachexia with a substantially increased risk of premature mortality. The aim of this study is to determine the clinical phenotype of cachexia specific to individuals with ESKD. METHODS: A longitudinal study which will recruit adult patients with ESKD receiving haemodialysis attending a Regional Nephrology Unit within the United Kingdom. Patients will be followed 2 monthly over 12 months and measurements of weight; lean muscle mass (bioelectrical impedance, mid upper arm muscle circumference and tricep skin fold thickness); muscle strength (hand held dynamometer), fatigue, anorexia and quality of life collected. We will determine if they experience (and to what degree) the known characteristics associated with cachexia. DISCUSSION: Cachexia is a debilitating condition associated with an extremely poor outcome. Definitions of cachexia in chronic illnesses are required to reflect specific nuances associated with each disease. These discrete cachexia definitions help with the precision of research and the subsequent clinical interventions to improve outcomes for patients suffering from cachexia. The absence of a definition for cachexia in an ESKD population makes it particularly difficult to study the incidence of cachexia or potential treatments, as there are no standardised inclusion criteria for patients with ESKD who have cachexia. Outcomes from this study will provide much needed data to inform development and testing of potential treatment modalities, aimed at enhancing current clinical practice, policy and education
Adipose atrophy in cancer cachexia:morphologic and molecular analysis of adipose tissue in tumour-bearing mice
Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. © 2006 Cancer Research UK
- …