25 research outputs found

    A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers

    Get PDF
    Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer. Author summary The combination of various genetic and environmental risk factors makes the understanding of the molecular circuitry behind complex diseases, like cancer, a major challenge. The homogeneous nature of pedigree dog breed genomes makes these dogs ideal for the identification of both simple disease-causing genetic variants and genetic risk factors for complex diseases. Mast cell tumours are the most common type of canine skin cancer, and one of the most common cancers affecting dogs of most breeds. Several breeds, including Labrador Retrievers (which represent one of the most popular dog breeds), have an elevated risk of mast cell tumour development. Here, by using a methodological approach that combined different techniques, we identified a common inherited synonymous variant, that predisposes Labrador Retrievers to mast cell tumour development. Interestingly, we showed that this variant, despite its synonymous nature, appears to have an effect on translation dynamics as it is associated with reduced levels of DSCAM, a cell adhesion molecule. The results presented here reveal dysregulation of cell adhesion to be an important factor in mast cell tumour pathogenesis, and also highlight the important role that synonymous variants can play in complex diseases

    Evaluation of single-fraction high dose FLASH radiotherapy in a cohort of canine oral cancer patients

    Get PDF
    BackgroundFLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT.MethodsPrivately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT.ResultsEleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses.ConclusionThis study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients

    A Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs.

    Get PDF
    Sequencing of candidate genes for obesity in Labrador retriever dogs identified a 14 bp deletion in pro-opiomelanocortin (POMC) with an allele frequency of 12%. The deletion disrupts the β-MSH and β-endorphin coding sequences and is associated with body weight (per allele effect of 0.33 SD), adiposity, and greater food motivation. Among other dog breeds, the deletion was only found in the closely related flat-coat retriever (FCR), where it is similarly associated with body weight and food motivation. The mutation is significantly more common in Labrador retrievers selected to become assistance dogs than pets. In conclusion, the deletion in POMC is a significant modifier of weight and appetite in Labrador retrievers and FCRs and may influence other behavioral traits.We are grateful to Rachel Moxon of Guide Dogs UK for collecting the assistance dog samples; Stephen J Sharp of the MRC Epidemiology Unit for his statistical advice; Jens Häggström, Karin Hultin Jäderlund and Berndt Klingeborn for the Swedish dog samples; Anne White for efforts to develop a canine beta MSH assay and adaptation of her original for figure 1b; and the Dogslife Consortium for samples from British Labrador retrievers (supported by an Institute Core Strategic Grant from the BBSRC to the Roslin Institute). A full list of the investigators who contributed to the Dogslife project is available from www.dogslife.ac.uk/who-runs-dogslife. AJG's academic post at the University of Liverpool is financially supported by Royal Canin. The work was primarily supported by the Wellcome Trust (Senior Investigator Award 095515/Z/11/Z and Strategic Award 100574/Z/12/Z), MRC (MRC Metabolic Diseases Unit, award 4050281695 and MRC_MC_UU_12012/5), and Dogs Trust. The authors would like to thank all the veterinary surgeons and nurses, owners and dogs who contributed samples.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.cmet.2016.04.01

    Genome-Wide Association Study of Golden Retrievers Identifies Germ-Line Risk Factors Predisposing to Mast Cell Tumours

    Get PDF
    Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10(-16)), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT

    Quark-gluon vertex in general kinematics

    Get PDF
    The original publication can be found at www.springerlink.com Submitted to Cornell University’s online archive www.arXiv.org in 2007 by Jon-Ivar Skullerud. Post-print sourced from www.arxiv.org.We compute the quark–gluon vertex in quenched lattice QCD in the Landau gauge, using an off-shell mean-field O(a)-improved fermion action. The Dirac-vector part of the vertex is computed for arbitrary kinematics. We find a substantial infrared enhancement of the interaction strength regardless of the kinematics.Ayse Kizilersu, Derek B. Leinweber, Jon-Ivar Skullerud and Anthony G. William

    Establishment and Initial Experience of Clinical FLASH Radiotherapy in Canine Cancer Patients

    No full text
    FLASH radiotherapy has emerged as a treatment technique with great potential to increase the differential effect between normal tissue toxicity and tumor response compared to conventional radiotherapy. To evaluate the feasibility of FLASH radiotherapy in a relevant clinical setting, we have commenced a feasibility and safety study of FLASH radiotherapy in canine cancer patients with spontaneous superficial solid tumors or microscopic residual disease, using the electron beam of our modified clinical linear accelerator. The setup for FLASH radiotherapy was established using a short electron applicator with a nominal source-to-surface distance of 70 cm and custom-made Cerrobend blocks for collimation. The beam was characterized by measuring dose profiles and depth dose curves for various field sizes. Ten canine cancer patients were included in this initial study; seven patients with nine solid superficial tumors and three patients with microscopic disease. The administered dose ranged from 15 to 35 Gy. To ensure correct delivery of the prescribed dose, film measurements were performed prior to and during treatment, and a Farmer-type ion-chamber was used for monitoring. Treatments were found to be feasible, with partial response, complete response or stable disease recorded in 11/13 irradiated tumors. Adverse events observed at follow-up ranging from 3-6 months were mild and consisted of local alopecia, leukotricia, dry desquamation, mild erythema or swelling. One patient receiving a 35 Gy dose to the nasal planum, had a grade 3 skin adverse event. Dosimetric procedures, safety and an efficient clincal workflow for FLASH radiotherapy was established. The experience from this initial study will be used as a basis for a veterinary phase I/II clinical trial with more specific patient inclusion selection, and subsequently for human trials

    Surface guided electron FLASH radiotherapy for canine cancer patients

    No full text
    BackgroundDuring recent years FLASH radiotherapy (FLASH-RT) has shown promising results in radiation oncology, with the potential to spare normal tissue while maintaining the antitumor effects. The high speed of the FLASH-RT delivery increases the need for fast and precise motion monitoring to avoid underdosing the target. Surface guided radiotherapy (SGRT) uses surface imaging (SI) to render a 3D surface of the patient. SI provides real-time motion monitoring and has a large scanning field of view, covering off-isocentric positions. However, SI has so far only been used for human patients with conventional setup and treatment.PurposeThe aim of this study was to investigate the performance of SI as a motion management tool during electron FLASH-RT of canine cancer patients.MethodsTo evaluate the SI system's ability to render surfaces of fur, three fur-like blankets in white, grey, and black were used to imitate the surface of canine patients and the camera settings were optimized for each blanket. Phantom measurements using the fur blankets were carried out, simulating respiratory motion and sudden shift. Respiratory motion was simulated using the QUASAR Respiratory Motion Phantom with the fur blankets placed on the phantom platform, which moved 10 mm vertically with a simulated respiratory period of 4 s. Sudden motion was simulated with an in-house developed phantom, consisting of a platform which was moved vertically in a stepwise motion at a chosen frequency. For sudden measurements, 1, 2, 3, 4, 5, 6, 7, and 10 Hz were measured. All measurements were both carried out at the conventional source-to-surface distance (SSD) of 100 cm, and in the locally used FLASH-RT setup at SSD = 70 cm. The capability of the SI system to reproduce the simulated motion and the sampling time were evaluated. As an initial step towards clinical implementation, the feasibility of SI for surface guided FLASH-RT was evaluated for 11 canine cancer patients.ResultsThe SI camera was capable of rendering surfaces for all blankets. The deviation between simulated and measured mean peak-to-peak breathing amplitude was within 0.6 mm for all blankets. The sampling time was generally higher for the black fur than for the white and grey fur, for the measurement of both respiratory and sudden motion. The SI system could measure sudden motion within 62.5 ms and detect motion with a frequency of 10 Hz. The feasibility study of the canine patients showed that the SI system could be an important tool to ensure patient safety. By using this system we could ensure and document that 10 out of 11 canine patients had a total vector offset from the reference setup position ConclusionsWe have shown that SI can be used for surface guided FLASH-RT of canine patients. The SI system is currently not fast enough to interrupt a FLASH-RT beam while irradiating but with the short sampling time sudden motion can be detected. The beam can therefore be held just prior to irradiation, preventing treatment errors such as underdosing the target

    A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in labrador and golden retrievers

    No full text
    Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breedpredisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer

    A synonymous germline variant in a gene encoding a cell adhesion molecule is associated with cutaneous mast cell tumour development in Labrador and Golden Retrievers

    No full text
    Mast cell tumours are the most common type of skin cancer in dogs, representing a significant concern in canine health. The molecular pathogenesis is largely unknown, but breed-predisposition for mast cell tumour development suggests the involvement of inherited genetic risk factors in some breeds. In this study, we aimed to identify germline risk factors associated with the development of mast cell tumours in Labrador Retrievers, a breed with an elevated risk of mast cell tumour development. Using a methodological approach that combined a genome-wide association study, targeted next generation sequencing, and TaqMan genotyping, we identified a synonymous variant in the DSCAM gene on canine chromosome 31 that is associated with mast cell tumours in Labrador Retrievers. DSCAM encodes a cell-adhesion molecule. We showed that the variant has no effect on the DSCAM mRNA level but is associated with a significant reduction in the level of the DSCAM protein, suggesting that the variant affects the dynamics of DSCAM mRNA translation. Furthermore, we showed that the variant is also associated with mast cell tumours in Golden Retrievers, a breed that is closely related to Labrador Retrievers and that also has a predilection for mast cell tumour development. The variant is common in both Labradors and Golden Retrievers and consequently is likely to be a significant genetic contributor to the increased susceptibility of both breeds to develop mast cell tumours. The results presented here not only represent an important contribution to the understanding of mast cell tumour development in dogs, as they highlight the role of cell adhesion in mast cell tumour tumourigenesis, but they also emphasise the potential importance of the effects of synonymous variants in complex diseases such as cancer. Author summary The combination of various genetic and environmental risk factors makes the understanding of the molecular circuitry behind complex diseases, like cancer, a major challenge. The homogeneous nature of pedigree dog breed genomes makes these dogs ideal for the identification of both simple disease-causing genetic variants and genetic risk factors for complex diseases. Mast cell tumours are the most common type of canine skin cancer, and one of the most common cancers affecting dogs of most breeds. Several breeds, including Labrador Retrievers (which represent one of the most popular dog breeds), have an elevated risk of mast cell tumour development. Here, by using a methodological approach that combined different techniques, we identified a common inherited synonymous variant, that predisposes Labrador Retrievers to mast cell tumour development. Interestingly, we showed that this variant, despite its synonymous nature, appears to have an effect on translation dynamics as it is associated with reduced levels of DSCAM, a cell adhesion molecule. The results presented here reveal dysregulation of cell adhesion to be an important factor in mast cell tumour pathogenesis, and also highlight the important role that synonymous variants can play in complex diseases
    corecore