219 research outputs found

    Stabilizing chaotic vortex trajectories: an example of high-dimensional control

    Full text link
    A chaos control algorithm is developed to actively stabilize unstable periodic orbits of higher-dimensional systems. The method assumes knowledge of the model equations and a small number of experimentally accessible parameters. General conditions for controllability are discussed. The algorithm is applied to the Hamiltonian problem of point vortices inside a circular cylinder with applications to an experimental plasma system.Comment: 15 LaTex pages, 4 Postscript figures adde

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure

    Synchronization and oscillator death in oscillatory media with stirring

    Get PDF
    The effect of stirring in an inhomogeneous oscillatory medium is investigated. We show that the stirring rate can control the macroscopic behavior of the system producing collective oscillations (synchronization) or complete quenching of the oscillations (oscillator death). We interpret the homogenization rate due to mixing as a measure of global coupling and compare the phase diagrams of stirred oscillatory media and of populations of globally coupled oscillators.Comment: to appear in Phys. Rev. Let

    In vivo matrigel plug assay as a potent method to investigate specific individual contribution of angiogenesis to blood flow recovery in mice

    Get PDF
    Neovascularization restores blood flow recovery after ischemia in peripheral arterial disease. The main two components of neovascularization are angiogenesis and arteriogenesis. Both of these processes contribute to functional improvements of blood flow after occlusion. However, discriminating between the specific contribution of each process is difficult. A frequently used model for investigating neovascularization is the murine hind limb ischemia model (HLI). With this model, it is difficult to determine the role of angiogenesis, because usually the timing for the sacrifice of the mice is chosen to be optimal for the analysis of arteriogenesis. More importantly, the occurring angiogenesis in the distal calf muscles is probably affected by the proximally occurring arteriogenesis. Therefore, to understand and subsequently intervene in the process of angiogenesis, a model is needed which investigates angiogenesis without the influence of arteriogenesis. In this study we evaluated the in vivo Matrigel plug assay in genetic deficient mice to investigate angiogenesis. Mice deficient for interferon regulatory factor (IRF)3, IRF7, RadioProtective 105 (RP105), Chemokine CC receptor CCR7, and p300/CBP-associated factor (PCAF) underwent the in vivo Matrigel model. Histological analysis of the Matrigel plugs showed an increased angiogenesis in mice deficient of IRF3, IRF7, and RP105, and a decreased angiogenesis in PCAF deficient mice. Our results also suggest an involvement of CCR7 in angiogenesis. Comparing our results with results of the HLI model found in the literature suggests that the in vivo Matrigel plug assay is superior in evaluating the angiogenic response after ischemia.Vascular Surger

    Chaotic advection of reacting substances: Plankton dynamics on a meandering jet

    Get PDF
    We study the spatial patterns formed by interacting populations or reacting chemicals under the influence of chaotic flows. In particular, we have considered a three-component model of plankton dynamics advected by a meandering jet. We report general results, stressing the existence of a smooth-filamental transition in the concentration patterns depending on the relative strength of the stirring by the chaotic flow and the relaxation properties of planktonic dynamical system. Patterns obtained in open and closed flows are compared.Comment: 5 pages, 3 figues, latex compiled with modegs.cl

    The structure of flame filaments in chaotic flows

    Full text link
    The structure of flame filaments resulting from chaotic mixing within a combustion reaction is considered. The transverse profile of the filaments is investigated numerically and analytically based on a one-dimensional model that represents the effect of stirring as a convergent flow. The dependence of the steady solutions on the Damkohler number and Lewis number is treated in detail. It is found that, below a critical Damkohler number Da(crit), the flame is quenched by the flow. The quenching transition appears as a result of a saddle-node bifurcation where the stable steady filament solution collides with an unstable one. The shape of the steady solutions for the concentration and temperature profiles changes with the Lewis number and the value of Da(crit) increases monotonically with the Lewis number. Properties of the solutions are studied analytically in the limit of large Damkohler number and for small and large Lewis number.Comment: 17 pages, 13 figures, to be published in Physica

    Potential theranostics of circulating tumor cells and tumor-derived exosomes application in colorectal cancer

    Get PDF
    Background: At the present time, colorectal cancer (CRC) is still known as a disease with a high mortality rate. Theranostics are flawless scenarios that link diagnosis with therapy, including precision medicine as a critical platform that relies on the development of biomarkers particularly "liquid biopsy". Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) in a liquid biopsy approach are of substantial importance in comparison with traditional ones, which cannot generally be performed to determine the dynamics of the tumor due to its wide restriction of range. Thus, recent attempts has shifted towards minimally noninvasive methods. Main text: CTCs and TDEs, as significant signals emitted from the tumor microenvironment, which are also detectable in the blood, prove themselves to be promising novel biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of them is still limited, and studies are at its infancy. One of the major challenges for the implementation of CTCs and TDEs which are new trends in translational medicine is the development of isolation and characterization; a standardizable approach. This review highlights and discusses the current challenges to find the bio fluids application in CRC early detection and clinical management. Conclusion: Taken together, CTCs and TDEs as silent drivers of metastasis can serve in the management of cancer patient treatment and it is of the upmost importance to expand our insight into this subject. However, due to the limited data available from clinical trials, further validations are required before addressing their putative application in oncology.Figure not available: see fulltext.. © 2020 The Author(s)

    Numerical Simulation of Vortex Crystals and Merging in N-Point Vortex Systems with Circular Boundary

    Full text link
    In two-dimensional (2D) inviscid incompressible flow, low background vorticity distribution accelerates intense vortices (clumps) to merge each other and to array in the symmetric pattern which is called ``vortex crystals''; they are observed in the experiments on pure electron plasma and the simulations of Euler fluid. Vortex merger is thought to be a result of negative ``temperature'' introduced by L. Onsager. Slight difference in the initial distribution from this leads to ``vortex crystals''. We study these phenomena by examining N-point vortex systems governed by the Hamilton equations of motion. First, we study a three-point vortex system without background distribution. It is known that a N-point vortex system with boundary exhibits chaotic behavior for N\geq 3. In order to investigate the properties of the phase space structure of this three-point vortex system with circular boundary, we examine the Poincar\'e plot of this system. Then we show that topology of the Poincar\'e plot of this system drastically changes when the parameters, which are concerned with the sign of ``temperature'', are varied. Next, we introduce a formula for energy spectrum of a N-point vortex system with circular boundary. Further, carrying out numerical computation, we reproduce a vortex crystal and a vortex merger in a few hundred point vortices system. We confirm that the energy of vortices is transferred from the clumps to the background in the course of vortex crystallization. In the vortex merging process, we numerically calculate the energy spectrum introduced above and confirm that it behaves as k^{-\alpha},(\alpha\approx 2.2-2.8) at the region 10^0<k<10^1 after the merging.Comment: 30 pages, 11 figures. to be published in Journal of Physical Society of Japan Vol.74 No.

    Diagnostic value of serum HER2 levels in breast cancer: a systematic review and meta-analysis.

    Full text link
    BACKGROUND:Measurement of serum human epidermal growth factor receptor-2 (HER-2/neu) levels might play an essential role as a diagnostic/screening marker for the early selection of therapeutic approaches and predict prognosis in breast cancer patients. We aimed to undertake a systematic review and meta-analysis focusing on the diagnostic/screening value of serum HER-2 levels in comparison to routine methods. METHODS:We performed a systematic search via PubMed, Scopus, Cochrane-Library, and Web of Science databases for human diagnostic studies reporting the levels of serum HER-2 in breast cancer patients, which was confirmed using the histopathological examination. Meta-analyses were carried out for sensitivity, specificity, accuracy, area under the ROC curve (AUC), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR). RESULTS:Fourteen studies entered into this investigation. The meta-analysis indicated the low sensitivity for serum HER2 levels (Sensitivity: 53.05, 95%CI 40.82-65.28), but reasonable specificity of 79.27 (95%CI 73.02-85.51), accuracy of 72.06 (95%CI 67.04-77.08) and AUC of 0.79 (95%CI 0.66-0.92). We also found a significant differences for PPV (PPV: 56.18, 95%CI 44.16-68.20), NPV (NPV: 76.93, 95%CI 69.56-84.31), PLR (PLR: 2.10, 95%CI 1.69-2.50) and NLR (NLR: 0.58, 95%CI 0.44-0.71). CONCLUSION:Our findings revealed that although serum HER-2 levels showed low se nsitivity for breast cancer diagnosis, its specificity, accuracy and AUC were reasonable. Hence, it seems that the measurement of serum HER-2 levels can play a significant role as a verification test for initial negative screening test results, especially in low-income regions due to its cost-effectiveness and ease of implementation

    Smooth-filamental transition of active tracer fields stirred by chaotic advection

    Full text link
    The spatial distribution of interacting chemical fields is investigated in the non-diffusive limit. The evolution of fluid parcels is described by independent dynamical systems driven by chaotic advection. The distribution can be filamental or smooth depending on the relative strength of the dispersion due to chaotic advection and the stability of the chemical dynamics. We give the condition for the smooth-filamental transition and relate the H\"older exponent of the filamental structure to the Lyapunov exponents. Theoretical findings are illustrated by numerical experiments.Comment: 4 pages, 3 figure
    corecore