221 research outputs found

    Dependence of geosynchrotron radio emission on the energy and depth of maximum of cosmic ray showers

    Full text link
    Based on CORSIKA and REAS2 simulations, we investigate the dependence of geosynchrotron radio emission from extensive air showers on the energy of the primary cosmic ray and the depth of the shower maximum. It is found that at a characteristic lateral distance, the amplitude of the bandpass-filtered radio signal is directly proportional to the energy deposited in the atmosphere by the electromagnetic cascade, with an RMS uncertainty due to shower-to-shower fluctuations of less than 3%. In addition, the ratio of this radio amplitude and that at a larger lateral distance is directly related to the atmospheric depth of the shower maximum, with an RMS uncertainty of ~15-20 g cm-2. By measuring these quantities, geosynchrotron radio emission from cosmic ray air showers can be used to infer the energy of the primary particle and the depth of the air shower maximum on a shower-to-shower basis.Comment: version accepted by Astroparticle Physics; slightly changed title and wording; one additional figur

    Radioelectric Field Features of Extensive Air Showers Observed with CODALEMA

    Full text link
    Based on a new approach to the detection of radio transients associated with extensive air showers induced by ultra high energy cosmic rays, the experimental apparatus CODALEMA is in operation, measuring about 1 event per day corresponding to an energy threshold ~ 5. 10^16 eV. Its performance makes possible for the first time the study of radio-signal features on an event-by-event basis. The sampling of the magnitude of the electric field along a 600 meters axis is analyzed. It shows that the electric field lateral spread is around 250 m (FWHM). The possibility to determine with radio both arrival directions and shower core positions is discussed.Comment: Accepted for publication in Astroparticle Physic

    Radio Detection of Cosmic Ray Air Showers with Codalema

    Full text link
    Studies of the radio detection of Extensive Air Showers is the goal of the demonstrative experiment CODALEMA. Previous analysis have demonstrated that detection around 5.10165.10^{16} eV was achieved with this set-up. New results allow for the first time to study the topology of the electric field associated to EAS events on a event by event basis.Comment: 6 pages, 4 figures Proceedings of the Rencontres de Moriond, Very High Energy Phenomena in the Universe, La Thuile, Italy (March 12-19, 2005

    Radio Detection of Extensive Air Showers with CODALEMA

    Full text link
    The principle and performances of the CODALEMA experimental device, set up to study the possibility of high energy cosmic rays radio detection, are presented. Radio transient signals associated to cosmic rays have been identified, for which arrival directions and shower's electric field topologies have been extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.10^16 eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of UHECR at a larger scale.Comment: 4 pages and 3 figures. To appear in the Proceedings of the 29th ICRC, Pune (2005

    Radiodetection of Cosmic Ray Extensive Air Showers

    Get PDF
    We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high- energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4 σ\sigma threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas

    Radio Detection of Cosmic Ray Extensive Air Showers: present status of the CODALEMA experiment

    Get PDF
    Data acquisition and analysis for the CODALEMA experiment, in operation for more than one year, has provided improved knowledge of the characteristics of this new device. At the same time, an important effort has been made to develop processing techniques for extracting transient signals from data containing interference.Comment: september 200

    Effect of hard processes on momentum correlations in pppp and ppˉp\bar{p} collisions

    Full text link
    The HBT radii extracted in p-pbar and pp collisions at SPS and Tevatron show a clear correlation with the charged particle rapidity density. We propose to explain the correlation using a simple model where the distance from the initial hard parton-parton scattering to the hadronization point depends on the energy of the partons emitted. Since the particle multiplicity is correlated with the mean energy of the partons produced we can explain the experimental observations without invoking scenarios that assume a thermal fireball. The model has been applied with success to the existing experimental data both in the magnitude and the intensity of the correlation. As well, the model has been extended to pp collisions at the LHC energy of 14 TeV. The possibilities of a better insight into the string spatial development using 3D HBT analysis is discussed.Comment: 12 pages, 6 figure

    Unlike particle correlations and the strange quark matter distillation process

    Get PDF
    We present a new technique for observing the strange quark matter distillation process based on unlike particle correlations. A simulation is presented based on the scenario of a two-phase thermodynamical evolution model.Comment: 15 pages, 2 figures, 1 tabl

    The origin of galactic cosmic rays

    Get PDF
    The origin of galactic cosmic rays is one of the most interesting unsolved problems in astroparticle physics. Experimentally, the problem is attacked by a multi-disciplinary effort, namely by direct measurements of cosmic rays above the atmosphere, by air shower observations, and by the detection of TeV γ\gamma rays. Recent experimental results are presented and their implications on the contemporary understanding of the origin of galactic cosmic rays are discussed.Comment: Invited talk given at the Roma International Conference on Astro-Particle physics (RICAP07) June 20th - 22nd, 2007. To be published in Nuclear Instruments and Methods
    corecore