514 research outputs found

    Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    Get PDF
    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns

    Experienced stressors and coping strategies among Iranian nursing students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>College students are prone to stress due to the transitional nature of college life. High levels of stress are believed to affect students' health and academic functions. If the stress is not dealt with effectively, feelings of loneliness, nervousness, sleeplessness and worrying may result. Effective coping strategies facilitate the return to a balanced state, reducing the negative effects of stress.</p> <p>Methods</p> <p>This descriptive cross-sectional study was performed to determine sources of stress and coping strategies in nursing students studying at the Iran Faculty of Nursing & Midwifery. All undergraduate nursing students enrolled in years 1-4 during academic year 2004-2005 were included in this study, with a total of 366 questionnaires fully completed by the students. The Student Stress Survey and the Adolescent Coping Orientation for Problem Experiences Inventory (ACOPE) were used for data collection.</p> <p>Results</p> <p>Most students reported "finding new friends" (76.2%), "working with people they did not know" (63.4%) as interpersonal sources of stress, "new responsibilities" (72.1%), "started college" (65.8%) as intrapersonal sources of stress more than others. The most frequent academic source of stress was "increased class workload" (66.9%) and the most frequent environmental sources of stress were being "placed in unfamiliar situations" (64.2%) and "waiting in long lines" (60.4%). Interpersonal and environmental sources of stress were reported more frequently than intrapersonal and academic sources. Mean interpersonal (P=0.04) and environmental (P=0.04) sources of stress were significantly greater in first year than in fourth year students. Among coping strategies in 12 areas, the family problem solving strategies, "trying to reason with parents and compromise" (73%) and "going along with family rules" (68%) were used "often or always" by most students. To cope with engaging in demanding activity, students often or always used "trying to figure out how to deal with problems" (66.4%) and "trying to improve themselves" (64.5%). The self-reliance strategy, "trying to make their own decisions" (62%); the social support strategies, "apologizing to people" (59.6%), "trying to help other people solve their problems" (56.3%), and "trying to keep up friendships or make new friends" (54.4%); the spiritual strategy, "praying" (65.8%); the seeking diversions strategy, "listening to music" (57.7%), the relaxing strategy "day dreaming" (52.5%), and the effort to "be close with someone cares about you" (50.5%) were each used "often or always" by a majority of students. Most students reported that the avoiding strategies "smoking" (93.7%) and "drinking beer or wine" (92.9%), the ventilating strategies "saying mean things to people" and "swearing" (85.8%), the professional support strategies "getting professional counseling" (74.6%) and "talking to a teacher or counselor" (67.2%) and the humorous strategy "joking and keeping a sense of humor" (51.9%) were used "seldom or never".</p> <p>Conclusion</p> <p>First year nursing students are exposed to a variety of stressors. Establishing a student support system during the first year and improving it throughout nursing school is necessary to equip nursing students with effective coping skills. Efforts should include counseling helpers and their teachers, strategies that can be called upon in these students' future nursing careers.</p

    Experimental observation of flow fields around active Janus spheres

    Get PDF
    The phoretic mechanisms at stake in the propulsion of asymmetric colloids have been the subject of debates during the past years. In particular, the importance of electrokinetic effects on the motility of Pt-PS Janus sphere was recently discussed. Here, we probe the hydrodynamic flow field around a catalytically active colloid using particle tracking velocimetry both in the freely swimming state and when kept stationary with an external force. Our measurements provide information about the fluid velocity in the vicinity of the surface of the colloid, and confirm a mechanism for propulsion that was proposed recently. In addition to offering a unified understanding of the nonequilibrium interfacial transport processes at stake, our results open the way to a thorough description of the hydrodynamic interactions between such active particles and understanding their collective dynamics

    Type IV Secretion-Dependent Activation of Host MAP Kinases Induces an Increased Proinflammatory Cytokine Response to Legionella pneumophila

    Get PDF
    The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs) detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs) sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS), induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-κB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria

    Silica burial enhanced by iron limitation in oceanic upwelling margins

    Get PDF
    In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake

    Analysis of the Trajectory of Drosophila melanogaster in a Circular Open Field Arena

    Get PDF
    BACKGROUND: Obtaining a complete phenotypic characterization of a freely moving organism is a difficult task, yet such a description is desired in many neuroethological studies. Many metrics currently used in the literature to describe locomotor and exploratory behavior are typically based on average quantities or subjectively chosen spatial and temporal thresholds. All of these measures are relatively coarse-grained in the time domain. It is advantageous, however, to employ metrics based on the entire trajectory that an organism takes while exploring its environment. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the locomotor behavior of Drosophila melanogaster, we used a video tracking system to record the trajectory of a single fly walking in a circular open field arena. The fly was tracked for two hours. Here, we present techniques with which to analyze the motion of the fly in this paradigm, and we discuss the methods of calculation. The measures we introduce are based on spatial and temporal probability distributions and utilize the entire time-series trajectory of the fly, thus emphasizing the dynamic nature of locomotor behavior. Marginal and joint probability distributions of speed, position, segment duration, path curvature, and reorientation angle are examined and related to the observed behavior. CONCLUSIONS/SIGNIFICANCE: The measures discussed in this paper provide a detailed profile of the behavior of a single fly and highlight the interaction of the fly with the environment. Such measures may serve as useful tools in any behavioral study in which the movement of a fly is an important variable and can be incorporated easily into many setups, facilitating high-throughput phenotypic characterization

    Divergent Roles of Clock Genes in Retinal and Suprachiasmatic Nucleus Circadian Oscillators

    Get PDF
    The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period

    Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe

    Get PDF
    In three spacetime dimensions, general relativity drastically simplifies, becoming a ``topological'' theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2+1)-dimensional vacuum gravity in the setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms, additions, missing references welcome; v2: minor changes, added reference

    Fried foods: a risk factor for laryngeal cancer?

    Get PDF
    The role of fried foods on laryngeal cancer risk was investigated in a case–control study from Italy and Switzerland on 527 cases and 1297 hospital controls. A significant increased risk was found for high consumption of fried meat, fish, eggs and potatoes, with odds ratios of 1.6, 3.1, 1.9 and 1.9, respectively
    corecore