7,432 research outputs found

    Entomofauna associada à cultura da mandioca na região sul de Mato Grosso do Sul.

    Get PDF
    bitstream/item/38729/1/BP200637.pd

    Procedure Manual for the Pneumology Department of an Argentine university hospital

    Get PDF
    Introducción La redacción de un manual de procedimientos (MP) obliga a racionalizar la actividad diaria, permite hallar imperfecciones, discutir e implementar medidas preventivas y correctivas, y acorta la brecha entre teoría y práctica. Nuestro objetivo es describir las etapas que llevaron a su redacción para un Servicio de Neumonología en un hospital universitario de gestión pública, detallar su estructura y relatar dificultades y perspectivas. Material y métodos Se determinó el organigrama y se establecieron interrelaciones y competencias. Se asignó la redacción de procedimientos según competencia de cada profesional en base a bibliografía, regulaciones, normas de acreditación y experiencia institucional. Los procedimientos fueron vinculados mediante hipertexto y cargados en la red informática. Resultados Ocupa 300 páginas, en 3 secciones: Procedimientos Administrativos, Operativos y de Seguridad, y un anexo. Consta de 57 procedimientos (48 de confección propia, 9 tomados de sociedades científicas). Para estudios específicos que se realizan en el Laboratorio se redactaron procedimientos de novo. Cuando se hallaron disponibles, se utilizaron procedimientos previos, especialmente aquellos referidos a bioseguridad y seguridad ambiental. Discusión: Se dedicó toda una sección a detallar diversas acciones administrativas de uso habitual, detectadas como fuente de conflicto. Dado que cada institución tiene su idiosincrasia administrativa y operativa, creemos que los textos y recomendaciones de sociedades científicas deben ser adaptados y/o modificados para expresar la práctica habitual en cada Servicio. Conclusiones: La información recabada dará lugar a futuras actualizaciones. Esto debe culminar en una mejor atención del paciente, fin último de nuestra Institución.Introduction The writing of a procedure manual (PM) requires streamlining daily activities, allowing to find imperfections, discuss and implement preventive and corrective measures, and decreases the gap between theory and practice. We describe the stages that led to the drafting of a PM for a Pneumology Department at a public university hospital, detailing its structure and reporting problems and prospects. Methods We determined an organization flow chart and established interrelations and personnel skills. The drafting of procedures was assigned according to competence of each staff member, based on literature, regulations, accreditation standards and institutional experience. The procedures were linked by hypertext and loaded into our computer network. Results: It extend over 300 pages in 3 sections: Administrative, Operational and Safety Procedures, and an appendix . It consists of 57 procedures (48 of these are own, while 9 were drawn from scientific societies). Some procedures for specific studies that are performed in our laboratory were written de novo. When available, previous procedures were used, especially those related to biosafety and environmental safety. Discussion: An entire section is devoted to a number of commonly used administrative actions, identified as source for conflict. As each institution has its own administrative and operational idiosyncrasies, we believe that recommendations of scientific societies should not be used verbatim, but must be adapted and/or modified to the usual practice in each department. Conclusions: The gathered information will lead to future updates. All this must lead to better patient care, ultimate goal of our InstitutionFil: Arce, S. C.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Civale, S. N.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Rodriguez, M. N.. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: de Vito, Eduardo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentin

    TMC-1C: an accreting starless core

    Get PDF
    We have mapped the starless core TMC-1C in a variety of molecular lines with the IRAM 30m telescope. High density tracers show clear signs of self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a region of about 7,000 AU in radius around the dust continuum peak, which is the most extended ``infalling'' region observed in a starless core with this tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests that their emission comes from a shell outside the colder interior traced by the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to ~10 K away from the center. This is consistent with a volume density drop of the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to ~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU). The column density implied by the gas and dust show similar N2H+ and CO depletion factors (f_D < 6). This can be explained with a simple scenario in which: (i) the TMC-1C core is embedded in a relatively dense environment (H2 ~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had time to reach equilibrium values; (ii) the surrounding material (rich in CO and N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than 3x10^5 yr, to account for the observed abundance of N2H+ across the core (~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4 yr) or ``undepleted'' material from the surrounding envelope has fallen towards it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure

    Proper Motions of Young Stellar Outflows in the Mid-infrared with Spitzer (IRAC). I. The NGC 1333 Region

    Get PDF
    We use two 4.5 μm Spitzer (IRAC) maps of the NGC 1333 region taken over a ~7 yr interval to determine proper motions of its associated outflows. This is a first successful attempt at obtaining proper motions of stellars' outflow from Spitzer observations. For the outflow formed by the Herbig-Haro objects HH7, 8, and 10, we find proper motions of ~9-13 km s–1, which are consistent with previously determined optical proper motions of these objects. We determine proper motions for a total of eight outflows, ranging from ~10 to 100 km s–1. The derived proper motions show that out of these eight outflows, three have tangential velocities ≤20 km s–1. This result shows that a large fraction of the observed outflows have low intrinsic velocities and that the low proper motions are not merely a projection effect

    ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment and Core Impact

    Full text link
    We present ALMA Cycle 1 observations of the HH46/47 molecular outflow using combined 12m array and ACA observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than previous observations. We use 13CO(1-0) and C18O(1-0) emission to correct for the 12CO(1-0) optical depth to accurately estimate the outflow mass, momentum and kinetic energy. This correction increases the estimates of the mass, momentum and kinetic energy by factors of about 9, 5 and 2, respectively, with respect to estimates assuming optically thin emission. The new 13CO and C18O data also allow us to trace denser and slower outflow material than that traced by the 12CO maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2km/s with respect to the cores central velocity). Adding with the slower material traced only by 13CO and C18O, there is another factor of 3 increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar, and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000AU of the protostar the 13CO and C18O emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS(2-1) emission reveals tentative evidence of a slowly-moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that is launched from relatively large radii from the source.Comment: Accepted for publication in ApJ. 26 pages, 20 figure

    Warm SiO gas in molecular bullets associated with protostellar outflows

    Full text link
    In this paper we present the first SiO multiline analysis (from J=2-1 to J=11-10) of the molecular bullets along the outflows of the Class 0 sources L1448-mm and L1157-mm, obtained through observations with IRAM and JCMT. We have computed the main physical parameters in each bullet and compared them with other tracers of warm and dense gas and with models for the SiO excitation in shocks. We find that the bullets close to L1448--mm, associated with high velocity gas, have higher excitation conditions (n(H2) ~ 10^{6} cm^{-3}, T > 500 K) with respect to the L1157 bullets (n(H2) ~1-5 10^{5} cm^{-3}, T ~ 100-300 K). In both the sources, there is a clear evidence of the presence of velocity components having different excitation conditions, with the denser and/or warmer gas associated with the gas at the higher speed. In L1448 the bulk of the emission is due to the high-excitation and high velocity gas, while in L1157 most of the emission comes from the low excitation gas at ambient velocity. The observed velocity-averaged line ratios are well reproduced by shocks with speeds v_s larger than ~ 30 km/s and densities ~ 10^{5} - 10^{6} cm^{-3}. Plane-parallel shock models, however, fail to predict all the observed line profiles and in particular the very similar profiles shown by both low and high excitation lines. The overall observations support the idea that the L1157 clumps are shock interaction events older than the L1448 bullets close to the driving source. In the latter objects, the velocity structure and the variations of physical parameters with the velocity resemble very closely those found in optical/IR jets near the protostar, suggesting that similar launching and excitation mechanisms are also at the origin of collimated jets seen at millimetre wavelengths.Comment: 11pages, 9 figures, A&A accepte

    On the kinematics of massive star forming regions: the case of IRAS 17233-3606

    Full text link
    Direct observations of accretion disks around high-mass young stellar objects would help to discriminate between different models of formation of massive stars. However, given the complexity of massive star forming regions, such studies are still limited in number. Additionally, there is still no general consensus on the molecular tracers to be used for such investigations. Because of its close distance and high luminosity, IRAS 17233-3606 is a potential good laboratory to search for traces of rotation in the inner gas around the protostar(s). Therefore, we selected the source for a detailed analysis of its molecular emission at 230 GHz with the SMA. We systematically investigated the velocity fields of transitions in the SMA spectra which are not affected by overlap with other transitions, and searched for coherent velocity gradients to compare them to the distribution of outflows in the region. Beside CO emission we also used high-angular H2 images to trace the outflow motions driven by the IRAS 17233-3606 cluster. We find linear velocity gradients in many transitions of the same molecular species and in several molecules. We report the first detection of HNCO in molecular outflows from massive YSOs. We discuss the CH3CN velocity gradient taking into account various scenarios: rotation, presence of multiple unresolved sources with different velocities, and outflow(s). Although other interpretations cannot be ruled out, we propose that the CH3CN emission might be affected by the outflows of the region. Higher angular observations are needed to discriminate between the different scenarios. The present observations, with the possible association of CH3CN with outflows in a few thousands AU around the YSOs' cluster, (i) question the choice of the tracer to probe rotating structures, and (ii) show the importance of the use of H2 images for detailed studies of kinematics.Comment: accepted for publication in A&

    An ALMA Search for Substructure, Fragmentation, and Hidden Protostars in Starless Cores in Chamaeleon I

    Full text link
    We present an Atacama Large Millimeter/submillimeter Array (ALMA) 106 GHz (Band 3) continuum survey of the complete population of dense cores in the Chamaeleon I molecular cloud. We detect a total of 24 continuum sources in 19 different target fields. All previously known Class 0 and Class I protostars in Chamaeleon I are detected, whereas all of the 56 starless cores in our sample are undetected. We show that the Spitzer+Herschel census of protostars in Chamaeleon I is complete, with the rate at which protostellar cores have been misclassified as starless cores calculated as <1/56, or < 2%. We use synthetic observations to show that starless cores collapsing following the turbulent fragmentation scenario are detectable by our ALMA observations when their central densities exceed ~10^8 cm^-3, with the exact density dependent on the viewing geometry. Bonnor-Ebert spheres, on the other hand, remain undetected to central densities at least as high as 10^10 cm^-3. Our starless core non-detections are used to infer that either the star formation rate is declining in Chamaeleon I and most of the starless cores are not collapsing, matching the findings of previous studies, or that the evolution of starless cores are more accurately described by models that develop less substructure than predicted by the turbulent fragmentation scenario, such as Bonnor-Ebert spheres. We outline future work necessary to distinguish between these two possibilities.Comment: Accepted by Ap
    corecore