Direct observations of accretion disks around high-mass young stellar objects
would help to discriminate between different models of formation of massive
stars. However, given the complexity of massive star forming regions, such
studies are still limited in number. Additionally, there is still no general
consensus on the molecular tracers to be used for such investigations. Because
of its close distance and high luminosity, IRAS 17233-3606 is a potential good
laboratory to search for traces of rotation in the inner gas around the
protostar(s). Therefore, we selected the source for a detailed analysis of its
molecular emission at 230 GHz with the SMA. We systematically investigated the
velocity fields of transitions in the SMA spectra which are not affected by
overlap with other transitions, and searched for coherent velocity gradients to
compare them to the distribution of outflows in the region. Beside CO emission
we also used high-angular H2 images to trace the outflow motions driven by the
IRAS 17233-3606 cluster. We find linear velocity gradients in many transitions
of the same molecular species and in several molecules. We report the first
detection of HNCO in molecular outflows from massive YSOs. We discuss the CH3CN
velocity gradient taking into account various scenarios: rotation, presence of
multiple unresolved sources with different velocities, and outflow(s). Although
other interpretations cannot be ruled out, we propose that the CH3CN emission
might be affected by the outflows of the region. Higher angular observations
are needed to discriminate between the different scenarios. The present
observations, with the possible association of CH3CN with outflows in a few
thousands AU around the YSOs' cluster, (i) question the choice of the tracer to
probe rotating structures, and (ii) show the importance of the use of H2 images
for detailed studies of kinematics.Comment: accepted for publication in A&