560 research outputs found

    Numerical error evaluation for tip clearance flow calculations in a centrifugal compressor

    Get PDF
    Since globally mesh independent solution are still beyond available computer resources for industrial cases, a method to quantify locally the numerical error is proposed. The design of experiments method helps selecting mesh parameters that influence the tip clearance solution, so that additional meshes are computed to evaluate the numerical error on the shroud friction coefficient. In the field of CFD applied to turbomachinery, this study results from a partnership between ENSICA, Liebherr-Aerospace Toulouse and Numeca International. This paper focuses on numerical error evaluation for RANS simulations, applied to centrifugal compressor flow field calculations. CFD is now commonly used for centrifugal compressor design optimization, but, as Hutton and Casey develop in [1], there is an urging demand for improved quality and trust in industrial CFD. Indeed, this stresses the need for comprehensive and thorough numerical error evaluation, namely the process of verification, as defined for example by Oberkampf and Trucano in [2]. Unfortunately, 3D turbulent calculations for turbomachinery components are still very demanding in computational resources and, to the knowledge of the author, there is no published result concerning comprehensive verification of the entire flow field in centrifugal compressors. As a first step on the way to achieve that, this paper presents a method aiming at the obtention of a numerical solution that can be regarded as locally mesh-independent. In other words, the objective is to compute the flow field on a grid such that the solution obtained has a specific region where the numerical error is negligible. It has long been recognized that the tip clearance of a centrifugal compressor is of paramount importance for aerodynamic performances, which means that accurately predicting the flow field in this region is crucial for accurate prediction of performances by means of CFD codes. Numerous studies have been published that compare numerical and experimental results in the tip region. However, in these studies, numerical error still remains an issue; for instance Basson and Lakshminarayana [3] show excellent comparisons with experiments, but they attribute the remaining discrepancies to insufficient grid resolution. Indeed, accurate predictions of global effects, such as efficiency, require a fine description of flow details. Therefore, friction at the shroud endwall is the concern of the study, since it is a very sensitive indicator of the quality of the velocity profile’s prediction at the wall

    Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate)

    Get PDF
    Beta-tricalcium phosphate (β-TCP) is a synthetic ceramic used for filling bone defects. It is a good alternative to autologous grafts since it is biocompatible, resorbable and osteoconductive. Previous in vivo studies have shown that macrophages are one of the first cells coming in contact with the biomaterial followed by osteoclasts and osteoblasts that will elaborate new bone packets. Studies have focused on osteoclast morphology and very few of them have investigated the role of macrophages. The aims of this study were to characterize (i) the biomaterial surface; (ii) the in vitro behavior of macrophages (J774.2 and Raw264.7 cells) using the description of cell morphology by scanning electron microscopy (SEM) at 7 and 14 days; (iii) the behavior of osteoblasts (SaOs-2 and MC3T3-E1 cells) seeded at the surface of the biomaterial 24, 48 and 72hours by SEM and confocal microscopy. Cell proliferation was analyzed by MTT assays. Viability and affinity of the macrophages for β-TCP were found significantly increased after 7 and 14d. MC3T3-E1 cells were anchored and stretched onto the β-TCP surface as early as 24h with a high proliferation rate (+190%) when compared to the surface of a well plate. SaOs-2 exhibited the same morphological profile at 72h. Proliferation became significantly higher compared to the plastic surface at only 72h (+129%). This study emphasises the importance of choice of the cell line used in exploring the osteoconductive and osteoinductive properties of a biomaterial. Additional studies are needed to analyze differentiation of macrophages into giant multinucleated cells and how the biomaterial surface influences osteoblast differentiation

    Human macrophages and osteoclasts resorb β-tricalcium phosphate in vitro but not mouse macrophages

    Get PDF
    β-TCP is a resorbable bony biomaterial but its biodegradation mechanisms in vivo remains unclear. Osteoclast can resorb β-TCP but a role for macrophages has also been suggested by in vivo studies. However no in vitro study has clearly evidenced the action of macrophages in the resorption process. We prepared flat β-TCP tablets with a smooth surface to investigate the in vitro capability of murine (RAW 264.7) and human macrophage cells (PBMCs) to resorb the biomaterial. In parallel, these cells were differentiated into multinucleated osteoclasts with M-CSF and RANK-L. The action of these cells was evaluated by scanning electron microscopy and Raman microspectroscopy after a 21 day culture on the tablets. Human macrophages and osteoclasts derived from PBMCs appeared able to resorb β-TCP by forming resorption pits at the surface of the flat tablets. RAW macrophages were unable to resorb β-TCP but they exhibited this possibility when they have been differentiated into osteoclasts. These cells can engulf β-TCP grains in their cytoplasm as evidenced by light and TEM microscopy with production of carbonic anhydrase (revealed by the immunogold technique in TEM). The resorbed areas were characterized by severe degradation of the grains showing speckled and stick-like aspects indicating a chemical corrosion. The effect was maximal at the grain boundaries which have a slightly different chemical composition. Changes in the Raman spectrum were observed between the resorbed and un-resorbed β-TCP suggesting crystal modifications. In contrast, un-differentiated murine macrophages were not able to chemically attack β-TCP and no resorption pit was observed. RAW cell is not a representative model of the macrophage-biomaterial interactions that occur in human. This in vitro study evidences that both human osteoclasts and macrophages represent active cell populations capable to resorb β-TCP

    The missing <i>Myopus</i>:plugging the gaps in Late Pleistocene small mammal identification in western Europe with geometric morphometrics

    Get PDF
    15 pagesInternational audienceLemmus and Myopus are two lemming species with distinct habitat requirements but which show very similar dental morphologies. They are thus extremely difficult to distinguish from one another in the fossil record on the basis of their dental remains, leading to poor understanding of the palaeobiogeographical evolution of Myopus as well as inaccurate palaeoenvrionmental reconstructions. Currently, the presence of Myopus in the fossil register from the Pleistocene is still debated and no firm occurrence of this lemming in western Europe has yet been confirmed for the Late Pleistocene. In this paper, we used geometric morphometrics on modern material to establish morphological differences between Lemmus and Myopus teeth (first lower and third upper molars). Morphological data were then used to build a robust linear discriminant model able to confidently classify isolated teeth of these two genera, and finally, linear discriminant models were used on fossil remains of Lemmus/Myopus from two Late Pleistocene archaeological/palaeontological sites (Grotte des Gorges and Gully Cave). This study demonstrates, for the first time, the presence of Myopus schisticolor in west European Late Pleistocene sites between the end of Marine Isotope Stage 3 and the beginning of the Holocene, during climatic events that favoured the development of taiga forest of birch and pine in these regions

    Maxillary Sinus Lift with Beta-Tricalcium Phosphate (β-TCP) in Edentulous Patients: A Nanotomographic and Raman Study

    Get PDF
    Sinus lift elevation restores bone mass at the maxilla in edentulate patients before the placement of dental implants. It consists of opening the lateral side of the sinus and grafting beta-tricalcium phosphate granules (β-TCP) under the olfactory membrane. Bone biopsies were obtained in five patients after 60 weeks. They were embedded undecalcified in poly(methyl methacrylate) (pMMA); blocks were analyzed by nanocomputed tomography (nanoCT); specific areas were studied by Raman microspectroscopy. Remnants of β-TCP were osseointegrated and covered with mineralized bone; osteoid tissue was also filling the inner porosity. Macrophages having engulfed numerous β-TCP grains were observed in marrow spaces. β-TCP was identified by nanoCT as osseointegrated particles and as granules in the cytoplasm of macrophages. Raman microspectroscopy permitted to compare the spectra of β-TCP and bone in different areas. The ratio of the ~820 cm(-1) band of pMMA (-CH2 groups) on the ν1 phosphate band at 960 cm(-1) reflected tissue hydration because water was substituted by MMA during histological processing. In bone, the ratio of the ~960 cm(-1) phosphate to the amide 1 band and the ratio ν2 phosphate band by the 1240-1250 amide III band reflect the mineralization degree. Specific bands of β-TCP were found in osseointegrated β-TCP granules and in the grains phagocytized by the macrophages. The hydration degree was maximal for β-TCP phagocytized by macrophages. Raman microspectroscopy associated with nanoCT is a powerful tool in the analysis of the biomaterial degradation and osseointegration

    Whole Blood Thromboelastometry by ROTEM and Thrombin Generation by Genesia According to the Genotype and Clinical Phenotype in Congenital Fibrinogen Disorders

    Get PDF
    The outcome of congenital fibrinogen defects (CFD) is often unpredictable. Standard coagulation assays fail to predict the clinical phenotype. We aimed to assess the pheno- and genotypic associations of thrombin generation (TG) and ROTEM in CFD. We measured fibrinogen (Fg) activity and antigen, prothrombin fragments F1+2, and TG by ST Genesia® with both Bleed- and ThromboScreen in 22 patients. ROTEM was available for 11 patients. All patients were genotyped for fibrinogen mutations. Ten patients were diagnosed with hypofibrinogenemia, nine with dysfibrinogenemia, and three with hypodysfibrinogenemia. Among the 17 mutations, eight were affecting the Fg γ chain, four the Fg Bβ chain, and five the Fg Aα chain. No statistical difference according to the clinical phenotypes was observed among FGG and FGA mutations. Median F1+2 and TG levels were normal among the different groups. Fg levels correlated negatively with F1+2 and peak height, and positively with lag time and time to peak. The pheno- and genotypes of the patients did not associate with TG. FIBTEM by ROTEM detected hypofibrinogenemia. Our study suggests an inverse link between low fibrinogen activity levels and enhanced TG, which could modify the structure–function relationship of fibrin to support hemostasis

    Whole Blood Thromboelastometry by ROTEM and Thrombin Generation by Genesia According to the Genotype and Clinical Phenotype in Congenital Fibrinogen Disorders

    Get PDF
    The outcome of congenital fibrinogen defects (CFD) is often unpredictable. Standard coagulation assays fail to predict the clinical phenotype. We aimed to assess the pheno- and genotypic associations of thrombin generation (TG) and ROTEM in CFD. We measured fibrinogen (Fg) activity and antigen, prothrombin fragments F1+2, and TG by ST Genesia® with both Bleed- and ThromboScreen in 22 patients. ROTEM was available for 11 patients. All patients were genotyped for fibrinogen mutations. Ten patients were diagnosed with hypofibrinogenemia, nine with dysfibrinogenemia, and three with hypodysfibrinogenemia. Among the 17 mutations, eight were affecting the Fg γ chain, four the Fg Bβ chain, and five the Fg Aα chain. No statistical difference according to the clinical phenotypes was observed among FGG and FGA mutations. Median F1+2 and TG levels were normal among the different groups. Fg levels correlated negatively with F1+2 and peak height, and positively with lag time and time to peak. The pheno- and genotypes of the patients did not associate with TG. FIBTEM by ROTEM detected hypofibrinogenemia. Our study suggests an inverse link between low fibrinogen activity levels and enhanced TG, which could modify the structure–function relationship of fibrin to support hemostasis
    corecore