77 research outputs found

    Instanton Calculus in R-R 3-form Background and Deformed N=2 Super Yang-Mills Theory

    Full text link
    We study the ADHM construction of instantons in N=2 supersymmetric Yang-Mills theory deformed in constant Ramond-Ramond (R-R) 3-form field strength background in type IIB superstrings. We compare the deformed instanton effective action with the effective action of fractional D3/D(-1) branes at the orbifold singularity of C^2/Z_2 in the same R-R background. We find discrepancy between them at the second order in deformation parameters, which comes from the coupling of the translational zero modes of the D(-1)-branes to the R-R background. We improve the deformed action by adding a term with space-time dependent gauge coupling. Although the space-time action differs from the action in the omega-background, both actions lead to the same instanton equations of motion at the lowest order in gauge coupling.Comment: 27 pages, version to appear in JHE

    Controlling quantum entanglement through photocounts

    Get PDF
    We present a protocol to generate and control quantum entanglement between the states of two subsystems (the system S{\cal S}) by making measurements on a third subsystem (the monitor M{\cal M}), interacting with S{\cal S}. For the sake of comparison we consider first an ideal, or instantaneous projective measurement, as postulated by von Neumann. Then we compare it with the more realistic or generalized measurement procedure based on photocounting on M{\cal M}. Further we consider that the interaction term (between S{\cal S} and M{\cal M}) contains a quantum nondemolition variable of S{\cal S} and discuss the possibility and limitations for reconstructing the initial state of S{\cal S} from information acquired by photocounting on M{\cal M}.Comment: 12 pages, 3 figures, accepted for publication in Phys. Rev

    Deformation of Super Yang-Mills Theories in R-R 3-form Background

    Full text link
    We study deformation of N=2 and N=4 super Yang-Mills theories, which are obtained as the low-energy effective theories on the (fractional) D3-branes in the presence of constant Ramond-Ramond 3-form background. We calculate the Lagrangian at the second order in the deformation parameter from open string disk amplitudes. In N=4 case we find that all supersymmetries are broken for generic deformation parameter but part of supersymmetries are unbroken for special case. We also find that classical vacua admit fuzzy sphere configuration. In N=2 case we determine the deformed supersymmetries. We rewrite the deformed Lagrangians in terms of N=1 superspace, where the deformation is interpreted as that of coupling constants.Comment: v2: reference added, v3: published version in JHE

    Multiplicativity of completely bounded p-norms implies a new additivity result

    Full text link
    We prove additivity of the minimal conditional entropy associated with a quantum channel Phi, represented by a completely positive (CP), trace-preserving map, when the infimum of S(gamma_{12}) - S(gamma_1) is restricted to states of the form gamma_{12} = (I \ot Phi)(| psi >< psi |). We show that this follows from multiplicativity of the completely bounded norm of Phi considered as a map from L_1 -> L_p for L_p spaces defined by the Schatten p-norm on matrices; we also give an independent proof based on entropy inequalities. Several related multiplicativity results are discussed and proved. In particular, we show that both the usual L_1 -> L_p norm of a CP map and the corresponding completely bounded norm are achieved for positive semi-definite matrices. Physical interpretations are considered, and a new proof of strong subadditivity is presented.Comment: Final version for Commun. Math. Physics. Section 5.2 of previous version deleted in view of the results in quant-ph/0601071 Other changes mino

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems

    Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector

    Get PDF
    The LVD detector, located in the INFN Gran Sasso National Laboratory (Italy), studies supernova neutrinos through the interactions with protons and carbon nuclei in the liquid scintillator and interactions with the iron nuclei of the support structure. We investigate the effect of neutrino oscillations in the signal expected in the LVD detector. The MSW effect has been studied in detail for neutrinos travelling through the collapsing star and the Earth. We show that the expected number of events and their energy spectrum are sensitive to the oscillation parameters, in particular to the mass hierarchy and the value of θ13\theta_{13}, presently unknown. Finally we discuss the astrophysical uncertainties, showing their importance and comparing it with the effect of neutrino oscillations on the expected signal.Comment: Accepted for pubblication on Astroparticle Physics. 36 pages, 18 figure

    An Algebraic Spin and Statistics Theorem

    Full text link
    A spin-statistics theorem and a PCT theorem are obtained in the context of the superselection sectors in Quantum Field Theory on a 4-dimensional space-time. Our main assumption is the requirement that the modular groups of the von Neumann algebras of local observables associated with wedge regions act geometrically as pure Lorentz transformations. Such a property, satisfied by the local algebras generated by Wightman fields because of the Bisognano-Wichmann theorem, is regarded as a natural primitive assumption.Comment: 15 pages, plain TeX, an error in the statement of a theorem has been corrected, to appear in Commun. Math. Phy

    Semi-inclusive B Decays and Direct CP Violation in QCD Factorization

    Get PDF
    We have systematically investigated the semi-inclusive B decays B->MX, which are manifestations of the quark decay b->Mq, within the framework of QCD-improved factorization. These decays are theoretically clean and have distinctive experimental signatures. We focus on a class of these that do not require any form factor information and therefore may be especially suitable for extracting information on the angles α\alpha and γ\gamma of the unitarity triangle. The nonfactorizable effects, such as vertex-type and penguin-type corrections to the two-body b decay and hard spectator corrections to the 3-body decay are calculable in the heavy quark limit. QCD factorization is applicable when the emitted meson is a light meson or a charmonium. We discuss the issue of the CPT constraint on partial rate asymmetries. The strong phase coming from final-state rescattering due to hard gluon exchange between the final states can induce large rate asymmetries for tree-dominated color-suppressed modes (π0,ρ0,ω)Xsˉ(\pi^0,\rho^0,\omega)X_{\bar s}. The nonfactorizable hard spectator interactions in the 3-body decay, though phase-space suppressed, are extremely important for the tree-dominated modes (π0,ρ0,ω)Xsˉ,ϕX(\pi^0,\rho^0,\omega)X_{\bar s}, \phi X, JXs,JXJ X_s,J X and the penguin-dominated mode ωXssˉ\omega X_{s\bar s}. In fact, they are dominated by the hard spectator corrections. Our result for B(BJ/ψXs){\cal B} (B\to J/\psi X_s) is in agreement with experiment. The semi-inclusive decay modes: Bs0(π0,ρ0,ω)XsˉB^0_s\to (\pi^0,\rho^0,\omega)X_{\bar s}, ρ0Xssˉ\rho^0X_{s\bar s}, B0(KX,KX)B^0\to(K^-X,K^{*-}X) and B(K0Xs,K0Xs)B^-\to (K^0X_s,K^{*0}X_s) are the most promising ones in searching for direct CP violation. In fact, they have branching ratios of order 10610410^{-6}-10^{-4} and CP rate asymmetries of order (1040)(10-40)%.Comment: 28 page

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites
    corecore