96 research outputs found

    Selective thyroid hormone analogs

    Get PDF
    Selective thyroid hormone agonists are disclosed that are highly selective for the TR.beta. subtype with high binding affinity. Methods of using such agonists and pharmaceutical compositions containing them are also disclosed, as are novel procedures for their preparation

    Thyroxine-thyroid hormone receptor interactions

    Get PDF
    ABSTRACTThyroid hormone (TH) actions are mediated by nuclear receptors (TRs α and β) that bind triiodothyronine (T3, 3,5,3′-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T4, 3,5,3′,5′-tetraiodo-l-thyronine) with lower affinity. T4 contains a bulky 5′ iodine group absent from T3. Because T3 is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5′ substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists. We therefore examined how T4 affects TR activity and conformation. We obtained several lines of evidence (ligand dissociation kinetics, migration on hydrophobic interaction columns, and non-denaturing gels) that TR-T4 complexes adopt a conformation that differs from TR-T3 complexes in solution. Nonetheless, T4 behaves as an agonist in vitro (in effects on coregulator and DNA binding) and in cells, when conversion to T3 does not contribute to agonist activity. We determined x-ray crystal structures of the TRβ LBD in complex with T3 and T4 at 2.5-Å and 3.1-Å resolution. Comparison of the structures reveals that TRβ accommodates T4 through subtle alterations in the loop connecting helices 11 and 12 and amino acid side chains in the pocket, which, together, enlarge a niche that permits helix 12 to pack over the 5′ iodine and complete the coactivator binding surface. While T3 is the major active TH, our results suggest that T4 could activate nuclear TRs at appropriate concentrations. The ability of TR to adapt to the 5′ extension should be considered in TR ligand design

    Low resolution structures of the retinoid X receptor DNA-binding and ligand-binding domains revealed by synchrotron x-ray solution scattering

    Get PDF
    Nuclear receptors are ligand-inducible transcription factors that share structurally related DNA-binding (DBD) and ligand-binding (LBD) domains. Biochemical and structural studies have revealed the modular nature of DBD and LBD. Nevertheless, the domains function in concert in vivo. While high-resolution crystal structures of nuclear receptor DBDs and LBDs are available, there are no x-ray structural studies of nuclear receptor proteins containing multiple domains. We report the solution structures of the human retinoid X receptor DBD-LBD (hRXR AB) region. We obtained ab initio shapes of hRXR AB dimer and tetramer to 3.3 and 1.7 nm resolutions, respectively, and established the position and orientation of the DBD and LBD by fitting atomic coordinates of hRXR DBD and LBD. The dimer is U-shaped with DBDs spaced at 2 nm in a head to head orientation forming an angle of about 10° with respect to each other and with an extensive interface area provided by the LBD. The tetramer is a more elongated X-shaped molecule formed by two dimers in head to head arrangement in which the DBDs are extended from the structure and spaced at about 6 nm. The close proximity of DBDs in dimers may facilitate homodimer formation on DNA; however, for the homodimer to bind to a DNA element containing two directly repeated halfsites, one of the DBDs would need to rotate with respect to the other element. By contrast, the separation of DBDs in the tetramers may account for their decreased ability to recognize DNA

    Synthesis and biological activity of novel thyroid hormone analogues: 5 '-aryl substituted GC-1 derivatives

    No full text
    Compounds that selectively modulate thyroid hormone action by functioning as isoform-selective agonists or antagonists of the thyroid hormone receptors (TRs) might be useful for medical therapy. We have synthesized a high affinity TRbeta-selective agonist ligand, GC-1, and optimized the synthetic route to provide large quantities of the compound for animal testing. In addition to an improvement in efficiency, the new synthetic route offers a chemical handle for selective modification of the thyronine skeleton to produce new derivatives. To explore the effect of GC-1 core structure modifications on binding to TR isoforms and activation of transcription, we developed here an efficient and flexible route to a new series of 5'-substituted GC-1 analogues. This route relies on ortho lithiation and in situ boration of the biarylmethane compound 1, a key intermediate of the revised GC-1 synthesis, followed by Suzuki cross-coupling. Using this approach we prepared and tested eleven 5'-substituted GC-1 analogues. Substitution at the 5'-position decreased binding affinity, but retained TRbeta-selectivity for most of the compounds. Transactivation assays reveal that most of these compounds function as thyroid hormone agonists, but one compound (GC-14) antagonizes the response to thyroid hormone

    A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor

    No full text
    Abstract BACKGROUND: Thyroid hormones regulate many different physiological processes in different tissues in vertebrates. Most of the actions of thyroid hormones are mediated by the thyroid hormone receptor (TR), which is a member of the nuclear receptor superfamily of ligand-activated transcription regulators. There are two different genes that encode two different TRs, TR alpha and TR beta, and these two TRs are often co-expressed at different levels in different tissues. Most thyroid hormones do not discriminate between the two TRs and bind both with similar affinities. RESULTS: We have designed and synthesized a thyroid hormone analog that has high affinity for the TRs and is selective in both binding and activation functions for TR beta over TR alpha. The compound, GC-1, was initially designed to solve synthetic problems that limit thyroid hormone analog preparation, and contains several structural changes with respect to the natural hormone 3,5,3'-triiodo-L-thyronine (T3). These changes include replacement of the three iodines with methyl and isopropyl groups, replacement of the biaryl ether linkage with a methylene linkage, and replacement of the amino-acid sidechain with an oxyacetic-acid sidechain. CONCLUSIONS: The results of this study show that GC-1 is a member of a new class of thyromimetic compounds that are more synthetically accessible than traditional thyromimetics and have potentially useful receptor binding and activation properties. The TR beta selectivity of GC-1 is particularly interesting and suggests that GC-1 might be a useful in vivo probe for studying the physiological roles of the different thyroid hormone receptor isoforms
    • …
    corecore