1,673 research outputs found

    Neutrino Constraints on Inelastic Dark Matter after CDMS II

    Full text link
    We discuss the neutrino constraints from solar and terrestrial dark matter (DM) annihilations in the inelastic dark matter (iDM) scenario after the recent CDMS II results. To reconcile the DAMA/LIBRA data with constraints from all other direct experiments, the iDM needs to be light (mχ<100m_\chi < 100 GeV) and have a large DM-nucleon cross section (σn∼\sigma_n \sim 10−4^{-4} pb in the spin-independent (SI) scattering and σn∼\sigma_n \sim 10 pb in the spin-dependent (SD) scattering). The dominant contribution to the iDM capture in the Sun is from scattering off Fe/Al in the SI/SD case. Current bounds from Super-Kamiokande exclude the hard DM annihilation channels, such as W+W−W^+W^-, ZZZZ, ttˉt\bar{t} and τ+τ−\tau^+ \tau^-. For soft channels such as bbˉb\bar{b} and ccˉc \bar{c}, the limits are loose, but could be tested or further constrained by future IceCube plus DeepCore. For neutrino constraints from the DM annihilation in the Earth, due to the weaker gravitational effect of the Earth and inelastic capture condition, the constraint exists only for small mass splitting δ<\delta < 40 keV and mχ∼(10,50)m_\chi \sim (10, 50) GeV even in the τ+τ−\tau^+ \tau^- channel.Comment: 11 pages, 8 figure

    Design and Performance of the XENON10 Dark Matter Experiment

    Full text link
    XENON10 is the first two-phase xenon time projection chamber (TPC) developed within the XENON dark matter search program. The TPC, with an active liquid xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground laboratory (LNGS) in Italy, and operated for more than one year, with excellent stability and performance. Results from a dark matter search with XENON10 have been published elsewhere. In this paper, we summarize the design and performance of the detector and its subsystems, based on calibration data using sources of gamma-rays and neutrons as well as background and Monte Carlo simulations data. The results on the detector's energy threshold, energy and position resolution, and overall efficiency show a performance that exceeds design specifications, in view of the very low energy threshold achieved (<10 keVr) and the excellent energy resolution achieved by combining the ionization and scintillation signals, detected simultaneously

    Discrete dark matter

    Get PDF
    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.Comment: minor changes to match version accepted in PRD, one reference adde

    The MEGA Advanced Compton Telescope Project

    Get PDF
    The goal of the Medium Energy Gamma-ray Astronomy (MEGA) telescope is to improve sensitivity at medium gamma-ray energies (0.4-50 MeV) by at least an order of magnitude over that of COMPTEL. This will be achieved with a new compact design that allows for a very wide field of view, permitting a sensitive all-sky survey and the monitoring of transient and variable sources. The key science objectives for MEGA include the investigation of cosmic high-energy particle accelerators, studies of nucleosynthesis sites using gamma-ray lines, and determination of the large-scale structure of galactic and cosmic diffuse background emission. MEGA records and images gamma-ray events by completely tracking both Compton and pair creation interactions in a tracker of double-sided silicon strip detectors and a calorimeter of CsI crystals able to resolve in three dimensions. We present initial laboratory calibration results from a small prototype MEGA telescope.Comment: 7 pages LaTeX, 5 figures, to appear in New Astronomy Reviews (Proceedings of the Ringberg Workshop "Astronomy with Radioactivities III"

    Sterile neutrino dark matter, CDMS-II and a light Higgs boson

    Full text link
    We add a singlet right handed neutrino plus a charged and a neutral singlet scalars to the standard model. This extension includes a discrete symmetry such that we obtain a heavy sterile neutrino which couples only to the electron and the new scalars. In this sense the singlet neutrino does not mix with ordinary ones and thus has no effect on Big Bang Nucleosynthesis. However, such sterile neutrino can be in equilibrium with electroweak particles in the early Universe due to its couplings to electrons and also because the Higgs boson mixes with the singlet scalars. We obtain that the sterile neutrino constitutes a dark matter candidate and analyze its direct detection in the light of current experiments. Our results show that if such a sterile neutrino is realized in nature, and CDMS-II experiment confirms its positive signal, dark matter demands a rather light Higgs boson with new Physics at some 500 GeV scale.Comment: 16 pages, 13 figures, uses axodraw.st

    Holographic Superconductors in a Cohesive Phase

    Full text link
    We consider a four-dimensional N=2 gauged supergravity coupled to matter fields. The model is obtained by a U(1) gauging of a charged hypermultiplet and therefore it is suitable for the study of holographic superconductivity. The potential has a topologically flat direction and the parameter running on this "moduli space" labels the new superconducting black holes. Zero temperature solutions are constructed and the phase diagram of the theory is studied. The model has rich dynamics. The retrograde condensate is just a special case in the new class of black holes. The calculation of the entanglement entropy makes manifest the properties of a generic solution and the superconductor at zero temperature is in a confined cohesive phase. The parameter running on the topologically flat direction is a marginal coupling in the dual field theory. We prove this statement by considering the way double trace deformations are treated in the AdS/CFT correspondence. Finally, we comment on a possible connection, in the context of gauge/gravity dualities, between the geometry of the scalar manifold in N=2 supergravity models and the space of marginal deformations of the dual field theory.Comment: 32 pages, 11 figures. Introduction rewritten and clarified, comments and details on section 4 added, acknowledgements rectified. To appear in JHE

    Transformer encoder based self-supervised learning for HVAC fault detection with unlabeled data

    Get PDF
    Data driven methods are the most studied fault detection and diagnostics (FDD) type in buildings HVAC systems. However, most studies rely on labeled data for specific faults which are hard to find and collect for real systems. While the fault -free data is easier to collect, it is still time consuming to label for large systems operation. Moreover, most of the studies rely on the usage of supervised learning algorithms which do not generalize well beyond the training data making unseen faults hard to detect. In this paper, we define a methodology to use a self -supervised learning method for HVAC systems ' FDD using a Transformer encoder, moreover, we tested it on a real case study. By strategically masking portions of the multivariate time -series data using Markov chain approach with two states. The model is trained by predicting these concealed segments. This approach, independent of labeled data, offers a scalable solution for practical HVAC applications. Anomalies are labeled using the Peak Over Threshold (POT) method, which dynamically determines thresholds by fitting reconstruction errors to a generalized Pareto distribution. Subsequent fault diagnostics emphasize features with pronounced reconstruction errors, pinpointing potential HVAC malfunctions. This methodology reduces dependence on labeled datasets and augments the model ' s generalization, facilitating detection of unobserved faults. This approach was applied to data from a real building. As a results multiple faults were detected mainly due to the malfunctioning of the monitoring system. The model demonstrates the ability to detect both sequential and individual faults. The period from October 19th to December 23rd was detected as a fault period due to the change in the trend of the data because of the monitoring system

    Quantum Gravity from Conformal Field Theory

    Get PDF
    We bootstrap loop corrections to AdS5 supergravity amplitudes by enforcing the consistency of the known classical results with the operator product expansion of NN = 4 super Yang-Mills theory. In particular this yields much new information on the spectrum of double-trace operators which can then be used, in combination with superconformal symmetry and crossing symmetry, to obtain a prediction for the one-loop amplitude for four graviton multiplets in AdS. This in turn yields further new results on subleading O(1/N 4) corrections to certain double-trace anomalous dimensions

    A chemical mutagenesis approach to insert post-translational modifications in aggregation-prone proteins

    Get PDF
    Neurodegenerative diseases are a class of disorders linked to the formation in the nervous system of fibrillar protein aggregates called amyloids. This aggregation process is affected by a variety of post-translational modifications, whose specific mechanisms are not fully understood yet. Emerging chemical mutagenesis technology is currently striving to address the challenge of introducing protein post-translational modifications, while maintaining the stability and solubility of the proteins during the modification reaction. Several amyloidogenic proteins are highly aggregation-prone, and current modification procedures can lead to unexpected precipitation of these proteins, affecting their yield and downstream characterization. Here, we present a method for maintaining amyloidogenic protein solubility during chemical mutagenesis. As proof-of-principle, we applied our method to mimic the phosphorylation of serine-26 and the acetylation of lysine-28 of the 40-residue long variant of amyloid-β peptide, whose aggregation is linked to Alzheimer’s disease

    The XENON100 Dark Matter Experiment

    Full text link
    The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for Xe nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a detailed description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in Xe gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield. The experiment is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of \sigma = 2x10^-45 cm^2 for a 100 GeV/c^2 WIMP.Comment: 23 pages, 27 figures; version accepted by journa
    • …
    corecore