132 research outputs found

    Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    Get PDF
    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP

    Molecular pathology of adamantinomatous craniopharyngioma: Review and opportunities for practice

    Get PDF
    Since the first identification of CTNNB1 mutations in adamantinomatous craniopharyngioma (ACP), much has been learned about the molecular pathways and processes that are disrupted in ACP pathogenesis. To date this understanding has not translated into tangible patient benefit. The recent development of novel techniques and a range of preclinical models now provides an opportunity to begin to support treatment decisions and develop new therapeutics based on molecular pathology. In this review the authors summarize many of the key findings and pathways implicated in ACP pathogenesis and discuss the challenges that need to be tackled to translate these basic science findings for the benefit of patients

    Paracrine roles of cellular senescence in promoting tumourigenesis

    Get PDF
    Senescent cells activate genetic programmes that irreversibly inhibit cellular proliferation, but also endow these cells with distinctive metabolic and signalling phenotypes. Although senescence has historically been considered a protective mechanism against tumourigenesis, the activities of senescent cells are increasingly being associated with age-related diseases, including cancer. An important feature of senescent cells is the secretion of a vast array of pro-inflammatory cytokines, chemokines, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Recent research has shown that SASP paracrine signalling can mediate several pro-tumourigenic effects, such as enhancing malignant phenotypes and promoting tumour initiation. In this review, we summarise the paracrine activities of senescent cells and their role in tumourigenesis through direct effects on growth and proliferation of tumour cells, tumour angiogenesis, invasion and metastasis, cellular reprogramming and emergence of tumour-initiating cells, and tumour interactions with the local immune environment. The evidence described here suggests cellular senescence acts as a double-edged sword in cancer pathogenesis, which demands further attention in order to support the use of senolytic or SASP-modulating compounds for cancer treatment

    Imaging Invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion.

    Get PDF
    Tissue invasion and infiltration by brain tumours poses a clinical challenge, with destruction of structures leading to morbidity. We assessed whether micro-CT could be used to map tumour invasion in adamantinomatous craniopharyngioma (ACP), and whether it could delineate ACPs and their intrinsic components from surrounding tissue.Three anonymised archival frozen ACP samples were fixed, iodinated and imaged using a micro-CT scanner prior to the use of standard histological processing and immunohistochemical techniques.We demonstrate that micro-CT imaging can non-destructively give detailed 3D structural information of tumours in volumes with isotropic voxel sizes of 4-6 microns, which can be correlated with traditional histology and immunohistochemistry.Such information complements classical histology by facilitating virtual slicing of the tissue in any plane and providing unique detail of the three dimensional relationships of tissue compartments

    Preclinical transgenic and patient-derived xenograft models recapitulate the radiological features of human adamantinomatous craniopharyngioma

    Get PDF
    To assess the clinical relevance of transgenic and patient-derived xenograft models of adamantinomatous craniopharyngioma (ACP) using serial magnetic resonance imaging (MRI) and high resolution post-mortem microcomputed tomography (ÎĽ-CT), with correlation with histology and human ACP imaging. The growth patterns and radiological features of tumors arising in Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mice, and of patient-derived ACP xenografts implanted in the cerebral cortex, were monitored longitudinally in vivo with anatomical and functional MRI, and by ex vivo ÎĽ-CT at study end. Pathological correlates with hematoxylin and eosin stained sections were investigated. Early enlargement and heterogeneity of Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) mouse pituitaries was evident at initial imaging at 8 weeks, which was followed by enlargement of a solid tumor, and development of cysts and hemorrhage. Tumors demonstrated MRI features that recapitulated those of human ACP, specifically, T1 -weighted signal enhancement in the solid tumor component following Gd-DTPA administration, and in some animals, hyperintense cysts on FLAIR and T1 -weighted images. Ex vivo ÎĽ-CT correlated with MRI findings and identified smaller cysts, which were confirmed by histology. Characteristic histological features, including wet keratin and calcification, were visible on ÎĽ-CT and verified by histological sections of patient-derived ACP xenografts. The Hesx1(Cre/+) ;Ctnnb1(lox(ex3)/+) transgenic mouse model and cerebral patient-derived ACP xenografts recapitulate a number of the key radiological features of the human disease and provide promising foundations for in vivo trials of novel therapeutics for the treatment of these tumors

    Electromagnetic Casimir densities for a wedge with a coaxial cylindrical shell

    Full text link
    Vacuum expectation values of the field square and the energy-momentum tensor for the electromagnetic field are investigated for the geometry of a wedge with a coaxal cylindrical boundary. All boundaries are assumed to be perfectly conducting and both regions inside and outside the shell are considered. By using the generalized Abel-Plana formula, the vacuum expectation values are presented in the form of the sum of two terms. The first one corresponds to the geometry of the wedge without the cylindrical shell and the second term is induced by the presence of the shell. The vacuum energy density induced by the shell is negative for the interior region and is positive for the exterior region. The asymptotic behavior of the vacuum expectation values are investigated in various limiting cases. It is shown that the vacuum forces acting on the wedge sides due to the presence of the cylindrical boundary are always attractive.Comment: 21 pages, 7 figure

    Non-secreting pituitary tumours characterised by enhanced expression of YAP/TAZ

    Get PDF
    Tumours of the anterior pituitary can manifest from all endocrine cell types but the mechanisms for determining their specification are not known. The Hippo kinase cascade is a crucial signalling pathway regulating growth and cell fate in numerous organs. There is mounting evidence implicating this in tumour formation, where it is emerging as an anti-cancer target. We previously demonstrated activity of the Hippo kinase cascade in the mouse pituitary and nuclear association of its effectors YAP/TAZ with SOX2-expressing pituitary stem cells. Here we sought to investigate whether these components are expressed in the human pituitary and if they are deregulated in human pituitary tumours. Analysis of pathway components by immunofluorescence reveals pathway activity during normal human pituitary development and in the adult gland. Poorly differentiated pituitary tumours (null cell adenomas, adamantinomatous craniopharyngiomas (ΑCPs) and papillary craniopharyngiomas (PCPs)), displayed enhanced expression of pathway effectors YAP/TAZ. In contrast, differentiated adenomas displayed lower or absent levels. Knock-down of the kinase-encoding Lats1 in GH3 rat mammosomatotropinoma cells suppressed Prl and Gh promoter activity following an increase in YAP/TAZ levels. In conclusion, we have demonstrated activity of the Hippo kinase cascade in the human pituitary and association of high YAP/TAZ with repression of the differentiated state both in vitro and in vivo. Characterisation of this pathway in pituitary tumours is of potential prognostic value, opening up putative avenues for treatments

    Interpopulational and seasonal variation in the chemical signals of the lizard Gallotia galloti

    Get PDF
    Communicative traits are strikingly diverse and may vary among populations of the same species. Within a population, these traits may also display seasonal variation. Chemical signals play a key role in the communication of many taxa. However, we still know far too little about chemical communication in some vertebrate groups. In lizards, only a few studies have examined interpopulational variation in the composition of chemical cues and signals and only one study has explored the seasonal effects. Here we sampled three subspecies of the Tenerife lizards (Gallotia galloti) and analyze the lipophilic fraction of their femoral gland secretions to characterize the potential interpopulational variation in the chemical signals. In addition, we assessed whether composition of these secretions differed between the reproductive and the non-reproductive season. We analyzed variations in both the overall chemical profile and the abundance of the two main compounds (cholesterol and vitamin E). Our results show interpopulational and seasonal differences in G. gallotia chemical profiles. These findings are in accordance with the high interpopulational variability of compounds observed in lizard chemical signals and show that their composition is not only shaped by selective factors linked to reproductive season

    MAPK pathway activation in the embryonic pituitary results in stem cell compartment expansion, differentiation defects and provides insights into the pathogenesis of papillary craniopharyngioma.

    Get PDF
    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ve stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ve cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a critical function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ve cells and suggest that persistent proliferative capacity of Sox2+ve cells may underlie the pathogenesis of PCP
    • …
    corecore