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Abstract: 

Senescent cells activate genetic programmes that irreversibly inhibit cellular proliferation, but 

also endow these cells with distinctive metabolic and signalling phenotypes. Although 

senescence has historically been considered a protective mechanism against tumourigenesis, 

the activities of senescent cells are increasingly being associated with age-related diseases, 

including cancer. An important feature of senescent cells is the secretion of a vast array of pro-

inflammatory cytokines, chemokines, and growth factors collectively known as the 

Senescence-Associated Secretory Phenotype (SASP). Recent research has shown that SASP 

paracrine signalling can mediate several pro-tumourigenic effects such as enhancing malignant 

phenotypes and promoting tumour initiation. In this review, we summarise the paracrine 

activities of senescent cells and their role in tumourigenesis through direct effects on growth 

and proliferation of tumour cells, tumour angiogenesis, invasion and metastasis, cellular 

reprogramming and emergence of tumour-initiating cells, and tumour interactions with the 

local immune environment. The evidence described here suggests cellular senescence acts as a 

double-edged sword in cancer pathogenesis, which demands further attention in order to 

support the use of senolytic or SASP-modulating compounds for cancer treatment. 
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Introduction 

The field of senescence has greatly expanded since this cell state was first observed in normal 

human fibroblasts, by Hayflick and Moorhead, over half a century ago (1). Initially referring 

to the finite proliferative capacity of cells in vitro, senescence is now defined as a cellular state 

of stable and long-term loss of proliferative capacity, but with the retention of normal metabolic 

activity and viability. It is characterised by specific changes in morphology (e.g. enlarged and 

flat cells), metabolism (e.g. increased glycolysis over mitochondrial oxidative 

phosphorylation), and cell physiology (e.g. resistance to apoptosis) (2-5).  

Senescence serves as a response to stress, and several inducing stimuli have now been 

identified, including chemotherapeutic, radiation, and oxidative stress, amongst others (Figure 

1). Activation of the senescence programme leads to cellular and molecular changes such as 

proliferation arrest, chromatin remodelling, elevated expression of cell cycle inhibitors (such 

as p16INK4A or p21CIP1), activation of a DNA damage response, enlargement of the lysosomal 

compartment, and activation of a senescence-associated secretory phenotype (SASP) (5, 6). 

The SASP mediates the paracrine activities of senescent cells through the secretion of a myriad 

of factors including cytokines and chemokines (e.g. IL1α, IL1β, IL6, IL8, CXCL1, CXCL2), 

growth factors (e.g. amphiregulin, EGF, BMPs, FGFs, VEGF, WNTs), extracellular matrix 

components (e.g. fibronectin), and proteases (e.g. MMPs, plasminogen activators), as well as 

exosome-like small extracellular vesicles (7) (3, 8-11). The composition and intensity of the 

SASP response can be affected by several factors including the senescence-inducing 

mechanism, cell type, and the amount of time passed since senescence initiation, indicating 

that there is no singular SASP (12-17). 

SASP effects can be beneficial or deleterious for normal physiology depending on its 

composition, intensity, and the local tissue microenvironment. Furthermore, the SASP is 
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involved in valuable physiological processes such as promoting tissue repair  (18-20), fine-

tuning the development of embryonic structures (21-23), and stimulating immune surveillance 

(24, 25). However, the deleterious consequences that result from ineffective clearance of 

senescent cells and their over-accumulation in tissues can promote age-related diseases and 

cancer (2, 26-30). Supporting this notion, the burden of senescent cells in tissues increases 

significantly with age in mice, primates, and humans (27), and they can be found in both benign 

and malignant tumours (31-35). Importantly, genetic or chemical ablation of senescent cells in 

mouse models delays the onset of age-related disorders, including cancer, leading to increased 

life-spans and promoting tissue rejuvenation in late life (36-38).  

Senescence was traditionally considered an innate anti-cancer mechanism as it can serve to 

eliminate damaged cells (3, 5). Activation of the senescence programme in cells harbouring 

oncogenic mutations acts as a tumour suppressor mechanism, which prevents the expansion of 

these mutated cells and progression into malignancies (3, 5). However, the role of senescence 

in tumourigenesis has been revised in recent years. There is mounting evidence that 

dysregulation or inappropriate activation of senescence contributes to tumour progression and 

malignancy (5, 7, 17). This review will discuss the paracrine effects of senescent cells on 

different aspects of tumour cell behaviour including: (i) direct effects on growth and 

proliferation of tumour cells; (ii) tumour angiogenesis, invasion and metastasis; (iii) cellular 

reprogramming and emergence of tumour initiating cells; and (iv) tumour interactions with the 

local immune environment (Figure 2). These subdivisions of the senescence-associated 

activities are mainly conceptual, as senescent cells exert compounded effects and it is not easy 

to distinguish between some of these activities through current experimental approaches, 

especially in an in vivo context. For in-depth discussion of the functions of cellular senescence 
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in physiological processes, such as embryological development and tissue repair, as well as in 

ageing, we refer the reader to other reviews in the field (2, 3). 

 

Growth and proliferation of tumour cells 

Cells present in the tumour microenvironment, such as fibroblasts, can become senescent and 

promote the growth and proliferation of tumour cells. (7, 39, 40). This has been demonstrated 

both in vitro and in vivo. Co-culture of senescent fibroblasts, induced by various stimuli (e.g. 

radiation, DNA damage, replicative exhaustion), can promote the growth and proliferation of 

benign, pre-malignant, and malignant cells from a range of tumour types (9, 12, 26, 41-44). 

For example, in co-culture assays, radiation-induced senescent fibroblasts sustained the growth 

of mammary epithelial cells that had dysregulated cell cycle and cell death pathways (44). 

These in vitro observations have been further substantiated in vivo, where co-injection of 

senescent fibroblasts has been shown to increase tumourigenicity in xenograft models, 

including primary breast cancer tissues (26, 45-47). 

The contributions of specific SASP components have been demonstrated using genetic knock 

down, siRNAs, and other molecular inhibitors (12, 26, 41, 45, 46, 48, 49). The use of siRNA 

and blocking  antibodies against amphiregulin (AREG) reduced the growth of benign prostate 

epithelial cells induced by conditioned media from senescent fibroblasts (48). Furthermore, a 

critical role for SASP in the promotion of obesity-associated liver cancer has been 

demonstrated using elegant genetic approaches  (50). In this research, deletion of IL1β (Il1b) 

was sufficient to reduce the expression of IL6 and CXCL1 in the liver, as well as the number 

and size of liver tumours.   
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Finally, there is evidence showing that the expression of growth factors alone, including some 

that fall under the SASP umbrella, can induce tumours independently in a paracrine/non-cell 

autonomous manner (51). For example, expression of fibroblast growth factor 10 (FGF10) by 

urogenital mesenchymal cells results in the induction of multifocal prostatic adenocarcinoma 

in epithelial cells (52). Similarly, expression of fibroblast growth factor 19 (FGF19) by skeletal 

muscle cells has been shown to induce hepatocellular carcinomas, which acquire somatic 

mutations in β-catenin (Ctnnb1) (53). The aforementioned experiments demonstrate that the 

SASP can promote cancer cell growth, challenging the view that senescence is primordially a 

beneficial process involved in preventing cancer progression.   

Tumour angiogenesis, invasion and metastasis 

Senescent cells can contribute to the acquisition of invasive and metastatic properties of cancer 

cells, as well as the induction of tumour-associated angiogenesis (7, 39). Tumour invasion and 

metastasis frequently involve an epithelial to mesenchymal shift in cellular phenotype 

(epithelial-mesenchymal transition, EMT). During EMT, epithelial cells attain key aspects 

enabling tumour invasion, including loss of cellular polarity and cell-to-cell adhesion, and gain 

of both migratory and invasive properties. Importantly, it is known that conditioned media from 

senescent cells can induce EMT in cell lines derived from many tumour types, including non-

aggressive breast cancer, mesothelioma, and melanoma, as evidenced by decreased expression 

of epithelial markers (e.g. E-cadherin, cytokeratins) and increased expression of mesenchymal 

markers (e.g. vimentin)  (12, 54, 55). Furthermore, individual SASP components can contribute 

to induce EMT phenotypes. For example, IL-6 has been shown to have cell-adhesion disrupting 

actions, which is an important component of invasion (56). Senescent cells and the SASP can 

also guide and promote cancer cell migration/invasion in models of thyroid and skin cancers 

https://en.wikipedia.org/wiki/Cell_polarity
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(57, 58). In addition, ablation of senescent cells after chemotherapy can prevent or delay cancer 

relapse and spread to distal tissues (59). 

Tumour invasion and metastasis also involve disruption of the basement membrane and 

remodelling of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs), which 

are often expressed as SASP factors (7). Indeed, the invasive properties of several epithelial 

cell types are enhanced by MMPs secreted by senescent cells, such as MMP2 and MMP3 (41, 

43, 44).  

A large number of proangiogenic factors are also known to be secreted by senescent cells, 

whereas angiostatic molecules have not been found to be secreted (27, 60). In particular, IL6 

has been reported to promote tumour-supportive angiogenesis in a Ras-driven tumour model 

(61). Similarly, co-injection of senescent fibroblasts or peritoneal mesothelial cells with cancer 

cells in xenograft models results in significantly greater tumour angiogenesis (62, 63). These 

data suggest that the paracrine activities of senescent cells are involved in the acquisition of 

malignant and metastatic phenotypes by signalling to transformed cells or their 

microenvironment.  

Cellular reprogramming of cells and emergence of tumour initiating cells in culture 

Tumour cells may exhibit loss of differentiation and may also attain stem cell characteristics; 

both features of cancer progression. In benign tumours and well-differentiated cancers, the 

histology of a tumour typically recapitulates the histology of the tissue of origin. In contrast, 

undifferentiated cancers have abnormal histology and typically exhibit more aggressive 

behaviour, as less differentiated cells are usually more proliferative. 
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Interestingly, the SASP is able to inhibit differentiation both in vitro and in vivo, while in some 

cases leads to acquisition of stem cell characteristics (41, 44, 54, 55, 64-66). Exposure of 

keratinocytes to the culture medium from senescent cells promotes expression of tumour stem 

cell markers, such as CD44, and leads to a greater regenerative capacity in vivo (65). Similarly, 

co-culturing undifferentiated myeloma cells in conditioned media from senescent myeloma 

cells promotes the emergence, maintenance, and migration of cancer stem-like cells (64). 

Higher in vivo expression of stem cell markers has also been observed in the liver in close 

association with GFP-labelled RAS-induced senescent cells (65). In addition, induction of 

senescence and SASP in mesothelioma cells led to the emergence of a subpopulation of highly 

clonogenic cells with enhanced ability to form tumours when xenografted in mice (55).  

Senescent cells can also induce in vivo reprogramming through SASP activation. 

Reprogramming is the process by which adult differentiated cells can be induced to become 

functionally equivalent to embryonic stem cells, and this can be stimulated by senescent cells 

in different models of tissue damage. While senescence is a barrier to reprogramming in vitro, 

the paracrine activities of senescent cells can promote the expression of stem cell markers and 

proliferation of neighbouring cells in vivo (66-68), and IL-6 is a key player in driving this 

process.  

The molecular mechanisms underpinning the paracrine induction of cancer stem cell features 

have been variably addressed. For instance, non-tumourigenic melanoma cells exposed to IL-

6 or chemokine ligand-2 (CCL2) develop tumourigenic potential in vivo in a STAT3-dependent 

manner (54). In vitro, co-culture experiments showed that SASP induced the expression of 

critical reprogramming factors NANOG, SOX2, and OCT4 (54). Indeed, it has further been 

shown that increased IL-6 expression, through induction of senescence either genetically or 

from tissue damage, can create a tissue context that increases reprogramming efficiency in vivo 
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(66). In this sense, a crucial role for the mechanistic target of rapamycin (mTOR) complex has 

recently been unveiled whereby it can either counteract or facilitate reprogramming by cell-

intrinsic and cell-extrinsic mechanisms, respectively (69). Together, these data suggest that 

senescent cells through SASP can induce undifferentiated cellular states, which depending on 

the context can be beneficial (e.g. tissue regeneration) or harmful (e.g. promotion of tumour-

initiating cells).  

Modulation of local immune response and immune evasion by senescent cells 

The relationship between senescence, tumourigenesis, and the immune system is complex and 

remains incompletely understood. Cells undergoing damage-induced senescence are often 

cleared by the immune system, as several SASP factors are cytokines and chemokines that can 

modulate the local immune environment (2, 3, 5, 70, 71). In this regard, the SASP has been 

shown to promote inflammation (7, 72). 

 

Immune surveillance refers to the removal of pathogens, as well as pre-malignant and 

malignant cells, by the immune system. In some cases, it has been shown that senescent cells 

are involved in these processes. For example, senescent cells promote their own clearance 

through the secretion of CCL2, which attracts and activates NK-T cells (73, 74). In p53-

deficient RAS-driven tumours induced to senesce through reestablishment of p53 function, 

innate immune cells migrate into the vicinity of the senescent tumour area leading to complete 

tumour regression in a mouse model of liver carcinoma (24). Such senescence-induced 

activation of the local immune system has also been shown to activate the clearance of pre-

malignant hepatocytes (75).  
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In contrast, senescent cells can also promote tumour evasion of immune surveillance (76, 77). 

During ageing of the skin, senescent stromal cells and their SASP (particularly IL6) drive an 

increase in the number of suppressive myeloid cells in mice and humans. Furthermore, it was 

shown that this leads to the inhibition of anti-tumour T-cell responses and enhanced tumour 

growth (77). Further research is required to clarify the factors that control the pro- and anti- 

tumour surveillance activities of senescent cells.  

Conclusion  

There is increasing evidence indicating that, in addition to their cell- and non-cell autonomous 

tumour-suppressive activities, the paracrine signals derived from senescent cells have 

detrimental roles in aging-related pathogenesis and cancer. Since senescent cells are generally 

abundant in benign tumours and also present at low numbers in several malignancies (31-34, 

57), their paracrine activities could contribute to tumour progression and cancer metastasis. 

Moreover, it is possible that these activities may also be involved in the initial steps of 

oncogenic transformation of normal cells and tumour initiation, as recently suggested in a 

mouse model of a human brain tumour (78). Promising translational opportunities have 

emerged in the use of molecules that selectively target and eliminate senescent cells (termed 

senolytics), or those that modulate the SASP and its negative effects (Table 1) (79). In this 

regard, the elimination of senescent cells or targeting the SASP represents a potential strategy 

for stopping or slowing tumour progression, as many activities of senescent cells promote 

tumour growth and malignant progression. It may be expected that the same paracrine activities 

capable of enhancing the cancerous phenotype of cells harbouring oncogenic mutations in vitro 

and in vivo could also contribute to the initial epigenetic and genetic alterations that fuel the 

appearance of tumour-initiating cells in normal, non-transformed cells (78). If so, early ablation 
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of senescent cells in pre-malignant lesions using senolytic compounds or neutralisation of the 

SASP may provide a plausible approach to prevent cancer.  

  

Figure legends 

Fig. 1 Overview of senescence inducers, changes in cell physiology, and activation of the 

senescence-associated secretory phenotype (SASP). The senescence programme can be 

activated by different stress stimuli (shown in blue) such as: cytotoxic chemotherapeutic drugs, 

replicative stress (which occurs due to deficiencies in the DNA replication machinery or 

maintenance of cell cycle checkpoints), ionizing radiation, oncogenic signalling, and oxidative 

stress. The main cellular and molecular effects are shown in red and include an expansion of 

the lysosomal compartment, metabolic and mitochondrial alterations, accumulation of DNA 

damage and rearrangement of the chromatin landscape, resistance to apoptosis, and an 

irreversible arrest of the cell cycle. Most senescent cells also activate a senescence-associated 

secretory phenotype (SASP), which is composed of growth factors, cytokines, chemokines, 

and metalloproteinases. Examples of common SASP factors are shown. These secreted factors 

can signal in an autocrine fashion to reinforce the senescence phenotype, or paracrinally with 

multiple effects on neighbouring cells. EGF, epithelial growth factor; FGFs, fibroblast growth 

factors; BMPs, Bone morphogenetic proteins; IL1, interleukin 1; IL6, interleukin 6; IL8, 

Interleukin 8; CCL2, C-C motif chemokine ligand 2; MMP2, matrix metallopeptidase 2; 

MMP3, matrix metallopeptidase 3. 

 

Fig. 2 Summary of the paracrine effects of the SASP in promoting tumourigenesis.  
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Table 1. Examples of compounds that target senescent cells or their SASP 

Name Targets Mechanism References 

ABT-737 BCL-2 family members Senolytic (80) 

Navitoclax (ABT-

263) 

BCL-2 family members Senolytic (36) 

Metformin NF-κB pathway members 

and Dicer 

SASP 

modulator 

(81) 

Dasatinib Several tyrosine kinases Senolytic (82) 

Rapamycin mTOR SASP 

modulator 

(46, 49) 

Anakinra IL1 receptor (IL1R) SASP 

modulator 

(83) 

Alvespimycin (17-

DMAG) 

Heat shock protein 90 

(HSP90) chaperone family 

Senolytic (84) 
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