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Abstract

Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region
in childhood. Two genetically engineered mouse models have been developed and are giving
valuable insights into ACP biology. These models have identified novel pathways activated
in tumors, revealed an important function of paracrine signalling and extended conventional
theories about the role of organ-specific stem cells in tumorigenesis. In this review, we
summarize these mouse models, what has been learnt, their limitations and open questions
for future research. We then discussed how these mouse models may be used to test novel
therapeutics against potentially targetable pathways recently identified in human ACP.

INTRODUCTION

Craniopharyngiomas (CPs) are benign epithelial tumors of the
sellar region that are associated with considerable morbidity and
premature mortality (30). This is predominantly due to their tend-
ency to cause damage to surrounding structures, leading to hypo-
thalamic injury and associated obesity, visual deficits and pituitary
dysfunction, including diabetes insipidus (35). This damage is often
further augmented by the side effects of surgery and radiotherapy,
the mainstay of clinical management (35).

Two subtypes have been defined; adamantinomatous craniopha-
ryngioma (ACP), the commonest tumor of the sellar region in
childhood, which frequently harbours mutations in the CTNNB1
gene (encoding beta-catenin), and papillary (PCP), predominantly a
disease of adults, which frequently carry activating BRAF p.V600E
mutations (30).

Considerable efforts have been invested in understanding the
biology of craniopharyngioma to speed up the development of
novel therapeutic strategies. For PCP, BRAF inhibitors have been
found to have some benefit in the limited cohorts of patients pub-
lished to date (6, 9). In contrast, no such novel, rationally targeted
therapies have yet been successful for ACP.

This review summarizes the development and use of genetically
engineered mouse models (GEMMs) in understanding the biology

of craniopharyngioma and their potential use in developing future
novel therapies. Specialized reviews covering clinical aspects,
molecular pathology and the use of cell cultures and xenografts
models are found in this special edition and elsewhere (5, 36).

WHY USE GENETICALLY ENGINEERED
MOUSE MODELS?

Mice have been used in studying the molecular biology of tumors
for decades. Their relatively small size, quick reproduction times,
and low maintenance costs make them particularly amenable for
rapid testing of biological and therapeutic hypotheses in a manner
and timescale not usually possible in human patients (14, 29). This
is particularly the case for CP where, the relative rarity and chronic
nature of the disease makes it difficult to study and has meant that
there are currently no published randomized control trials of treat-
ment to date.

A variety of methods have been used to model tumors in mice.
For craniopharyngioma two approaches have been successful, xen-
ografting and genetically engineered mouse models (GEMMs) (2,
10, 15, 42, 44). Xenografting of patient material either orthotopi-
cally or heterotopically into mice has enabled the direct study of
human tissue in an in vivo setting and its use in craniopharnygioma
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is reviewed in a separate paper in this series (Stache and Holsken)
(10, 42, 44).

In contrast, GEMMs utilize a range of techniques to manipulate
the expression of genes and generate tumors of murine origin (18).
Since their first description in the early 1980s, they have given
insight in the mechanisms of tumor initiation, progression, interac-
tions with the host and provided a key tool used in the development
and testing of modern targeted therapeutics in a range of tumor
types (14, 18). The ability to control the expression of individual
genes at specific times and in specific cells/tissues enables detailed
analyses of their in vivo function. This coupled with lineage tracing
techniques, allowing the tracking of cell populations across time,
has provided unique insights into the spatial organisation and regu-
lation of tissues and tumors. Such approaches have improved our
understanding of ACP biology, with perhaps wider implications for
other tumor types (1, 2, 15). These will be discussed below.

The use of GEMMs in preclinical trials is enabling detailed
study of the efficacy, pharmacology and pharmacogenomics of tar-
geted therapies in an in vivo system, complementing in vitro data
using cell lines. Whilst there have been notable successes using this
approach leading to novel treatments for cancer patients, (e.g. the
use of the smoothened inhibitor GDC-0449 in a preclinical model
of medulloblastoma, later validated in the clinic), there have been
many disappointments, where promising results in the preclinical
setting have failed to translate to benefit in patients with the disease
(7, 14, 38). Reasons for these failures are multiple and may be
case-dependent. Sometimes, there are underlying biological differ-
ences, after all no mouse model can recapitulate the complexity of
a human tumor wholly. For instance, the genetic heterogeneity and
clonal evolution seen both within individual human tumors and
between tumors of the same type can be difficult to model in mouse
(18). However, it is generally recognized that the design of the pre-
clinical research can have a critical impact and efforts must be done
to model the human disease as closely as possible in the preclinical
trials (14, 43). For instance, testing of new agents in mice often
does not recapitulate how they will be applied to the patients, e.g.
the survival benefit of a drug administered to na€ıve murine tumor
may not translate to benefit to an extensively pretreated human
tumor.

In our view, benign tumors such as craniopharyngioma, charac-
terized by a low mutational load, may be easier to model in
GEMMs and provided that preclinical trials are robust and well-
designed, data are more likely to be extrapolated to human patients.
Nonetheless, GEMMs should be combined with other preclinical
tools, including well-characterized and validated cell lines and xen-
ograft models. The critical point is to be aware of the limitations of
the research model used and ensure that any aspect of the research
being investigated, whether a novel pathway or a targeted treat-
ment, is conserved between the GEMM and the human tumors.

SIMILAR MOLECULAR AETIOLOGY IN
GEMM MODELS AND HUMAN ACP

Two GEMMS of ACP have been developed, which we will call
the embryonic model and the inducible model (summarized in Fig-
ure 1) (2, 15). No models of PCP have so far been developed. In
both ACP models, cells express an oncogenic form of beta-catenin
(encoded by the Ctnnb1 gene), which is functionally comparable to

that identified in human ACP tumors. In the mouse models, expres-
sion of oncogenic beta-catenin is achieved through cre-
recombinase-mediated excision of exon 3, whilst human tumors
harbor over-activating mutations, mostly in exon 3 (2, 12, 15, 22,
27, 39). The final outcome is the same in mouse and human ACP,
the expression of a degradation-resistant form of mutant beta-
catenin leading to the over-activation of the WNT/beta- catenin
pathway (20).

Ctnnb1 exon 3 encodes part of the beta-catenin protein domain
that when phosphorylated targets beta-catenin for degradation
within the cell. Point mutations, as generally seen in human tumors,
and excision of this region in the GEMMs is predicted to extend
the half-life of the beta-catenin protein leading to nucleo-
cytoplasmic accumulation and transcription of WNT pathway
target genes (15, 20). Surprisingly in human ACP samples, nucleo-
cytoplasmic accumulation of beta-catenin and downstream activa-
tion of the pathway, as evidenced by expression of target genes
(e.g. AXIN2), is mostly limited to only a small proportion of tumor
cells, often correlating with epithelial whorls, sometimes referred to
as “clusters”(12, 22, 25, 27, 39). In human tumors, these clusters
are often seen at the leading edge of tumor invasion, show loss of
epithelial differentiation and express stem cell markers (e.g. CD44),
(4, 11, 23, 26). In both GEMMs of ACP, the pituitary gland also
shows cell clusters with nucleo-cytoplasmic beta-catenin, which are
similar to the human clusters (2, 15). Next, we will describe in
more detail the two mouse models.

THE EMBRYONIC MODEL OF ACP

The anterior pituitary derives from an invagination of the oral ecto-
derm known as Rathke’s pouch. Lineage tracing has shown that
Hesx1 expressing cells within Rathke’s pouch give rise to all the
hormone producing cells within the anterior pituitary (15). Using a
Hesx1-Cre mouse, exon 3 was deleted from the Ctnnb1 locus by
cre-mediated recombination in cells of the developing pituitary.
The pituitaries of these mice were initially enlarged and dysfunc-
tional. A high proportion of mice died at birth due to enlarged pitui-
taries causing airway obstruction, however those that survived
went on to develop large cystic-solid pituitary tumors leading to
death at around 6 months (15).

Analogous to human ACP tumors, these mice showed isolated
clusters of nucleo-cytoplasmic accumulating beta-catenin cells in the
developing pituitary, despite activation of the cre-recombinase in all
cells within Rathke’s pouch (Figure 1A) (15). Increased expression
of markers of WNT pathway activation, e.g. Lef1, Axin2 and Cyclin
D1 were also limited to these clusters. The murine clusters did not
express markers of hormone-producing cell differentiation and a pro-
portion expressed the pituitary stem cell marker SOX2 (15). Activa-
tion of the WNT pathway in Pit1 1 ve committed progenitors or
differentiated hormone-producing cells did not lead to cluster or
tumor formation, highlighting a need for the tumor-initiating muta-
tion to occur in an undifferentiated cell type (15).

Using a mouse line reporting WNT pathway activation, Ando-
niadou et al. successfully isolated the cluster cells by flow-activated
cell sorting in the embryonic model and performed expression anal-
ysis comparing cluster vs. non-cluster pituitary tissue (1). This
identified the high expression of many secreted factors by the clus-
ter cells, including Sonic Hedgehog (SHH) and members of the
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FGF, TGFb and BMP families of growth factors as well as many
inflammatory mediators such as cytokines and chemokines (1).
These findings were subsequently confirmed in human tumors sug-
gesting a strong homology both histologically and molecularly
between mice and human clusters, and supporting the usage of this
model in therapeutic testing of drugs against these pathways (1).

Further analysis by immuno-staining and in situ hybridisation
showed evidence of paracrine signalling between tumor compart-
ments. This was confirmed in human samples; for example, SHH, a
soluble ligand was shown to be expressed in the clusters, whilst its
downstream target PTCH1 was expressed in clusters and palisading
epithelium (1). The activation of the SHH and other pathways was
subsequently described by other groups using both targeted and
genome-wide transcriptional approaches, confirming the suitability of
this GEMM to study the pathogenesis of the human tumors and com-
plement more conventional analyses of human specimens (13, 16, 19).

In addition to the molecular similarities, this GEMM shows
other similarities to ACP. Murine tumors are frequently cystic,
often haemorrhagic with histological areas of micro-cystic change
similar to that seen in the stellate reticulum of the human tumors

(Figure 1A) (15). Importantly, there are also differences. The
tumors do not calcify and ghost cells or wet keratin are not
observed. Similarly, the finger-like invasions that pose a challenge
to treating clinicians are not seen in the mouse model. The reasons
underlying these differences are not understood. Calcification may
require longer terms than a few months, and although highly simi-
lar overall, there are specific anatomical differences between the
hypothalamo-pituitary axis in mice and humans, which may
explain the lack of brain invasion in murine ACP (33). In conclu-
sion, the embryonic mouse model is a good genetic tool to study
the pathogenesis of the human tumors, discover new pathways and
test the effects of their genetic or chemical inhibition in vivo. Need-
less to say, it is not a good model to study brain invasion or the
mechanisms involved in wet-keratin formation or calcification.

THE INDUCIBLE MODEL OF ACP

Building on the embryonic GEMM, oncogenic beta-catenin was
specifically expressed in SOX2 positive adult pituitary stem cells
using a tamoxifen inducible, mutated form of cre recombinase

Figure 1. Genetically engineered mouse models of ACP. A)

Embryonic model. Over-activation of the WNT pathway in the devel-

oping pituitary results in large cystic/solid tumors. Clusters of cells

accumulating nucleo-cytoplasmic beta-catenin (arrows) are present in

both human ACP and murine (E18.5) pretumoral pituitaries. B) Induci-

ble model. Tamoxifen-induced activation of the WNT pathway at 6

weeks of age results in the formation of beta-catenin accumulating

clusters followed by tumor formation. However, lineage tracing with

yellow fluorescent protein (YFP) shows that tumors are not derived

from clusters and do not contain activated beta-catenin suggesting a

non-cell autonomous mechanism of tumorigenesis. Clusters secrete

numerous factors, e.g. SHH, BMPs, FGFs and inflammatory modula-

tors potentially inducing tumorigenesis in a paracrine manner

(Reprinted from Cell Stem Cell, 13, Andoniadou CL, Matsushima D,

Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M,

Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, et al.,

Sox2(C) stem/progenitor cells in the adult mouse pituitary support

organ homeostasis and have tumor-inducing potential, pp 433–445,

Copyright 2013, with permission from Elsevier).
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(Sox2-CreERT2 mouse line). The SOX2 cell population was con-
firmed to have both self-renewal and differentiation capacity into
all lineages of the anterior pituitary, thus demonstrating that stem
cells are contained within the Sox2-expressing cell compartment
(2). Similar to the embryonic model, activation of the WNT path-
way in this mice from 6 weeks of age led to the development of
undifferentiated tumors (synaptophysin and hormone negative)
within the normal pituitary tissue, including the presence of nucleo-
cytoplasmic accumulating beta-catenin cell clusters (2). Surpris-
ingly, lineage tracing using yellow fluorescent protein (YFP)
revealed that the tumors themselves were not derived from these
cluster cells and did not carry the activating beta-catenin mutation,
as confirmed by laser capture microdissection and PCR (2). This
suggests an apparent non-cell autonomous mechanism of tumori-
genesis (Figure 1B), possibly through the paracrine activities of
secreted proteins such as SHH, FGFs, BMPs, TGFB, cytokines
among others. This phenomenon is increasingly described in

several other cancer model systems and extends the traditional
understanding of cancer initiation as a cell autonomous process
(28, 31). Further details of the mechanisms underlying these proc-
esses and their relation to human cancer are a matter of current
study.

Together these models have given valuable insights into the cells
of origin and cell signalling pathways activated in human ACP.
Specific lessons and further questions raised by the models are
summarized in Table 1.

PRECLINICAL THERAPEUTIC TESTING
OF NOVEL THERAPIES FOR ACP

Studies of both human and mouse tumors have highlighted a num-
ber of potentially targetable pathways and processes for which a
variety of therapeutic agents are available (summarized in Table 2).

Table 1. Summary of lessons learnt and future research questions derived from researching GEMMs of ACP.

Lessons: Future questions:

Mutation of Ctnnb1 appears sufficient to induce pituitary tumors

analogous to ACP. These mutations must be sustained in an

undifferentiated precursor/stem cell whether in the embryo

or in the adult (2, 15).

What additional molecular steps (e.g. genetic/epigenetic)

are between the formation of the clusters in the embryo

and tumors in adult mice?

Clusters are not dividing and express a range of soluble factors and

immune system genes. Paracrine signalling between tumor

compartments occurs (e.g. SHH pathway) (1, 2).

What is the role of these factors? Are they

all required or is there redundancy?

Tumors may develop in a non-cell-autonomous manner (2). Are the Ctnnb1 mutations present in all tumor cells in human

ACP? If so, why is nucleo-cytoplasmic accumulation only

seen in some cells?

What is the cell-of-origin of the tumor tissue in the inducible GEMM?

Common formation of cysts in human and murine ACP (15). What is the mechanism of cyst formation in human and murine tumors?

Table 2. Preclinical therapeutic opportunities for ACP.

Evidence of dysregulation

in human ACP

Evidence of dysregulation

in murine ACP

Potential therapeutic

targeting

Sonic Hedgehog

(SHH) pathway

Up-regulated in gene expression

studies of ACP.

SHH expressed by clusters with

downstream targets also expressed

in palisading epithelium (1, 16, 19)

Expressed by clusters with

targets expressed in non-cluster

pituitary tissue (2).

Preclinical trial using

smoothened inhibitor

vismodegib in progress (3).

Epidermal Growth Factor

Receptor (EGFR)

EGFR is activated (phosphorylated)

in ACP clusters (24)

Ligand EGF up-regulated in mouse

models. Pathway activation to be

confirmed (34)

Inhibition by gefitinib reduces ACP

cell migration and increases

radiosensitivity in primary cell

culture (24, 41).

Inflammation Inflammatory infiltrate observed

histologically.

High levels of inflammatory mediators

(e.g. IL6, a-defensins) identified

in cystic fluid

High levels of CXCR4 and CXCR12

correlated with recurrence (17, 32, 37).

Expression of cytokines

(e.g. IL1A) by murine clusters.

CXCR4 expressed by clusters with

ligand CXCL12 expressed

by non-cluster cells (1).

Mechanism of action of intracystic

IFNa therapy currently unknown.

Specific (e.g. anti-IL6) or non-specific

(e.g. NSAIDS) immune modulators

readily available for testing.

Other A range of other pathways,

e.g. BMP, FGFs,

TGFb, MMPs have been shown to be

expressed or activated in murine

and human ACP (1, 19).
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The described GEMMs of ACP offer an opportunity for testing
novel therapies and can be used in a number of different ways.

The embryonic model is so far the better characterized of the
models. Its biology in the early stages of tumorigenesis is being
increasingly well-defined using both targeted assessments of clus-
ters at embryonic and early postnatal stages as well as transcrip-
tome- and exome-wide assessment of both clusters and whole
tumors. This increasing knowledge of the model combined with the
ability to treat at a relatively young age, without the need of tamox-
ifen injection makes it an appealing preclinical tool to use for drug
testing.

The impact of agents on clusters can be assessed quickly: (i) in
vivo through administration either in utero or early postnatal life;
and (ii) ex vivo through assessment in culture conditions. To assess
the impact on tumor formation, mice can be chronically
treated postnatally and followed longitudinally. However, these
approaches may represent better assessment of tumor prevention,
rather than cure of late stage tumors required by patients. Nonethe-
less, the identification of drugs capable of preventing tumor growth
in the mouse model may be relevant if these pathways are still
important in well-developed human tumors. The use of a human
ACP xenograft mouse model could extend the results obtained
from the preclinical research using the GEMM.

Late stage tumors in this model develop slowly and unpredict-
ably, over a prolonged period of several weeks or months (Current
median survival 23 weeks, inter-quartile range 13–34 weeks,
n 5 93) (unpublished). In addition, the biology of the well-
developed mouse tumors is less understood. Mice are usually
humanely culled due to symptoms of hydrocephalus, often relating
to haemorrhage into cysts, which makes design of studies and end-
points challenging. Such studies will likely require preclinical
imaging assessments to both establish when to treat and also to
assess treatment response. Novel analyses aiming to understand the
imaging characteristics and further refine the growth pattern of
tumor formation in these ACP mouse models are currently under-
way (8).

It is increasingly recognized that preclinical trials should as far
as possible recapitulate human treatment regimens (14). For ACP
the standard treatment is usually surgical resection, and then if
resection is incomplete, radiotherapy of 56Gy in multiple fractions
of 1.8-2Gy. The location of the GEMM tumors within the sellar
makes surgery unlikely to be feasible in these murine models, how-
ever, technology to deliver stereotactic radiotherapy to mice is
increasingly available and it is hoped that this can be incorporated
for analyses of at least some therapeutics in the GEMMs of ACP
(21).

CONCLUSION

The two GEMMs of ACP have given many novel insights into
ACP biology, which have been subsequently validated in human
tissue. In addition, they have highlighted many further areas of
study and generated novel hypotheses, for which they are well
placed to test. The common molecular aetiology together with the
proven capacity to predict and identify novel genes/pathways make
these models suitable to study human ACP. As highlighted, they
also have limitations and they only model certain aspects of the dis-
ease. As the molecular landscape of human ACP becomes better

defined it is likely that further refinement of these models will also
be required. Whilst CTNNB1 to date is the only recurrently mutated
gene identified in ACP, other additional alterations, whether genetic
or epigenetic, may be required for development of the human inva-
sive disease. Once identified these will also require mouse model-
ling. Similarly, no GEMM of PCP has been developed so far. Such
a model would be of help in refining the role of BRAF inhibitors
and in solving the controversy of the cell-of-origin of the cranio-
pharyngioma subtypes. Recent advances in the field of transgene-
sis, such as the use of the CRISPR/Cas technology will facilitate
tremendously the generation of new GEMMs (40).

To maximize their potential, GEMMs should be used in con-
junction with other approaches. For successful development of any
novel therapeutics, a combination of in vitro and in vivo disease
models, using both GEMMs and xenografts, will be required to
ensure that all the different aspects of the biology and pathogenesis
are collectively covered. Similarly, a combination of both genetic
and therapeutic targeting approaches will likely give the best level
of preclinical efficacy of specific pathways. The advances in the
understanding of human ACP for the last 10 years have been phe-
nomenal and we anticipate that specific target therapies should be
implemented in the next 10 years ahead.
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