217 research outputs found

    Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).

    Get PDF
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future

    Twitter-Delivered Behavioral Weight-Loss Interventions: A Pilot Series

    Get PDF
    BACKGROUND: Lifestyle interventions are efficacious at reducing risk for diabetes and cardiovascular disease but have not had a significant public health impact given high cost and patient and provider burden. OBJECTIVE: Online social networks may reduce the burden of lifestyle interventions to the extent that they displace in-person visits and may enhance opportunities for social support for weight loss. METHODS: We conducted an iterative series of pilot studies to evaluate the feasibility and acceptability of using online social networks to deliver a lifestyle intervention. RESULTS: In Study 1 (n=10), obese participants with depression received lifestyle counseling via 12 weekly group visits and a private group formed using the online social network, Twitter. Mean weight loss was 2.3 pounds (SD 7.7; range -19.2 to 8.2) or 1.2% (SD 3.6) of baseline weight. A total of 67% (6/9) of participants completing exit interviews found the support of the Twitter group at least somewhat useful. In Study 2 (n=11), participants were not depressed and were required to be regular users of social media. Participants lost, on average, 5.6 pounds (SD 6.3; range -15 to 0) or 3.0% (SD 3.4) of baseline weight, and 100% (9/9) completing exit interviews found the support of the Twitter group at least somewhat useful. To explore the feasibility of eliminating in-person visits, in Study 3 (n=12), we delivered a 12-week lifestyle intervention almost entirely via Twitter by limiting the number of group visits to one, while using the same inclusion criteria as that used in Study 2. Participants lost, on average, 5.4 pounds (SD 6.4; range -14.2 to 3.9) or 3.0% (SD 3.1) of baseline weight, and 90% (9/10) completing exit interviews found the support of the Twitter group at least somewhat useful. Findings revealed that a private Twitter weight-loss group was both feasible and acceptable for many patients, particularly among regular users of social media. CONCLUSIONS: Future research should evaluate the efficacy and cost-effectiveness of online social network-delivered lifestyle interventions relative to traditional modalities

    Counteranion-Dependent Reaction Pathways in the Protonation of Cationic Ruthenium−Vinylidene Complexes

    Get PDF
    The tetraphenylborate salts of the cationic vinylidene complexes [Cp*Ru=C=CHR(iPr2PNHPy)]+ (R = p-C6H4CF3 (1a-BPh4), Ph (1b-BPh4), p-C6H4CH3 (1c- BPh4), p-C6H4Br (1d-BPh4), tBu (1e-BPh4), H (1f-BPh4)) have been protonated using an excess of HBF4·OEt2 in CD2Cl2, furnishing the dicationic carbyne complexes [Cp*Ru≡CCH2R(iPr2PNHPy)]2+ (R = p-C6H4CF3 (2a), Ph (2b), p-C6H4CH3 (2c), p-C6H4Br (2d), tBu (2e), H (2f)), which were characterized in solution at low temperature by NMR spectroscopy. The corresponding reaction of the chloride salts 1a-Cl, 1b-Cl, 1c-Cl, and 1d-Cl followed a different pathway, instead affording the novel alkene complexes [Cp*RuCl(κ1(N),η2(C,C)-C5H4N-NHPiPr2CH=CHR)][BF4] (3a−d). In these species, the entering proton is located at the α- carbon atom of the former vinylidene ligand, which also forms a P−C bond with the phosphorus atom of the iPr2PNHPy ligand. To shed light on the reaction mechanism, DFT calculations have been performed by considering several protonation sites. The computational results suggest metal protonation followed by insertion. The coordination of chloride to ruthenium leads to alkenyl species which can undergo a P−C coupling to yield the corresponding alkene complexes. The noncoordinating nature of [BPh4]− does not allow the stabilization of the unsaturated species coming from the insertion step, thus preventing this alternative pathway

    Severity of Depressive Symptoms and Accuracy of Dietary Reporting among Obese Women with Major Depressive Disorder Seeking Weight Loss Treatment

    Get PDF
    An elevation in symptoms of depression has previously been associated with greater accuracy of reported dietary intake, however this association has not been investigated among individuals with a diagnosis of major depressive disorder. The purpose of this study was to investigate reporting accuracy of dietary intake among a group of women with major depressive disorder in order to determine if reporting accuracy is similarly associated with depressive symptoms among depressed women. Reporting accuracy of dietary intake was calculated based on three 24-hour phone-delivered dietary recalls from the baseline phase of a randomized trial of weight loss treatment for 161 obese women with major depressive disorder. Regression models indicated that higher severity of depressive symptoms was associated with greater reporting accuracy, even when controlling for other factors traditionally associated with reporting accuracy (coefficient  =  0.01 95% CI = 0.01 – 0.02). Seventeen percent of the sample was classified as low energy reporters. Reporting accuracy of dietary intake increases along with depressive symptoms, even among individuals with major depressive disorder. These results suggest that any study investigating associations between diet quality and depression should also include an index of reporting accuracy of dietary intake as accuracy varies with the severity of depressive symptoms

    Counteranion and Solvent Assistance in Ruthenium-Mediated Alkyne to Vinylidene Isomerizations

    Get PDF
    The complex [Cp*RuCl(iPr2PNHPy)] (1) reacts with 1-alkynes HC≡CR (R = COOMe, C6H4CF3) in dichloromethane furnishing the corresponding vinylidene complexes [Cp*Ru≡C≡CHR(iPr2PNHPy)]Cl (R = COOMe (2a- Cl), C6H4CF3 (2b-Cl)), whereas reaction of 1 with NaBPh4 in MeOH followed by addition of HC≡CR (R = COOMe, C6H4CF3) yields the metastable π-alkyne complexes [Cp*Ru(η2-HC≡CR)(iPr2PNHPy)][BPh4] (R = COOMe (3a-BPh4), C6H4CF3 (3b-BPh4)). The transformation of 3a-BPh4/3b-BPh4 into their respective vinylidene isomers in dichloromethane is very slow and requires hours to its completion. However, this process is accelerated by addition of LiCl in methanol solution. Reaction of 1 with HC≡CR (R = COOMe, C6H4CF3) in MeOH goes through the intermediacy of the π-alkyne complexes [Cp*Ru(η2-HC≡CR)(iPr2PNHPy)]Cl (R = COOMe (3a-Cl), C6H4CF3 (3b-Cl)), which rearrange to vinylidenes in minutes, i.e., much faster than their counterparts containing the [BPh4]− anion. The kinetics of these isomerizations has been studied in solution by NMR. With the help of DFT studies, these observations have been interpreted in terms of chloride- and methanolassisted hydrogen migrations. Calculations suggest participation of a hydrido−alkynyl intermediate in the process, in which the hydrogen atom can be transferred from the metal to the β-carbon by means of species with weak basic character acting as proton shuttles

    Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas

    Get PDF
    Background: The green crab Carcinus maenas is known for its high acclimation potential to varying environmental abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as predicted for the future. In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR. Results: Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2% of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress. Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the transmembrane 9 superfamily, and a Cl-/HCO3 - exchanger of the SLC 4 family were differentially regulated. These genes were also affected in a previously published hypoosmotic acclimation response study. Conclusions: The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the posterior gill arches might go beyond what has been demonstrated up to date; and (4) a re-configuration of gill epithelia might occur in response to hypercapnia

    Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling

    Get PDF
    The impact of ocean acidification on benthic habitats is a major preoccupation of the scientific community. However, the natural variability of pCO2 and pH in those habitats remains understudied, especially in temperate areas. In this study we investigated temporal variations of the carbonate system in nearshore macrophyte meadows of the western Baltic Sea. These are key benthic ecosystems, providing spawning and nursery areas as well as food to numerous commercially important species. In situ pCO2, pH (total scale), salinity and PAR irradiance were measured with a continuous recording sensor package dropped in a shallow macrophyte meadow (Eckernförde bay, western Baltic Sea) during three different weeks in July (pCO2 and PAR only), August and September 2011.The mean (± SD) pCO2 in July was 383±117 µatm. The mean (± SD) pCO2 and pHtot in August were 239±20 µatm and 8.22±0.1, respectively. The mean (± SD) pCO2 and pHtot in September were 1082±711 µatm and 7.83±0.40, respectively. Daily variations of pCO2 due to photosynthesis and respiration (difference between daily maximum and minimum) were of the same order of magnitude: 281±88 µatm, 219±89 μatm and 1488±574 µatm in July, August and September respectively. The observed variations of pCO2 were explained through a statistical model considering wind direction and speed together with PAR irradiance. At a time scale of days to weeks, local upwelling of elevated pCO2 water masses with offshore winds drives the variation. Within days, primary production is responsible. The results demonstrate the high variability of the carbonate system in nearshore macrophyte meadows depending on meteorology and biological activities. We highlight the need to incorporate these variations in future pCO2 scenarios and experimental designs for nearshore habitats
    corecore