449 research outputs found

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    Kualitas Hidup Pasien Diabetes Melitus Tipe 2 di Puskesmas Se Kota Kupang

    Full text link
    Diabetes Mellitus is well known as a chronic disease which can lead to a decrease in quality of life in all domains. The study aims to explore the diabetic type 2 patient\u27s quality of life and find out the factors affecting in type 2 diabetic mellitus patients. The cross-sectional study design is used that included 65 patient with type 2 diabetes mellitus, in 11 public health centers of Kupang City. Data were collected by using Short Form Survey (SF-36) that assessed 8-scale health profile. Independent sample t-test is used to analyze the correlation between the factors affecting and the quality of life. the study showed that the QoL of DM patients decreased in all 8- health profile including physical functioning, social functioning, mental health, general health, pain, change in the role due to physical problems and emotional problems. The Study also showed there was a relationship between gender, duration of suffering from Diabetes mellitus, and complications to the quality of life. Male perceived a better quality of life than female

    The Spread of Fecally Transmitted Parasites in Socially-Structured Populations

    Get PDF
    Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease–related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a “core” area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms

    JET machine operations in T&D-T

    Get PDF
    JET, the world's largest operating tokamak with unique Be/W wall and tritium handling capability, completed a Deuterium-Tritium (D-T) campaign in 2021 (Maggi et al 29th Fusion Energy Conf.) following a decade of preparatory experiments, dedicated enhancements, technical rehearsals and training (Horton et al 2016 Fusion Eng. Des. 109-111 925). Operation with tritium raises significant technical, safety and scientific challenges not encountered in standard protium or deuterium operation. This contribution describes the tritium operational requirements, pulses and technical preparations, new operating procedures, lessons learned and details on the achieved operational availability and performance. The preparation and execution of the recent JET tritium experiments benefitted from the previous experience in 1991 (Preliminary Tritium Experiment), 1997 (DTE1 campaign) and 2003 (Trace Tritium Campaigns) and consisted of the following five phases: technical rehearsals and scenario preparation, tritium commissioning, 100% tritium campaign, D-T campaign (DTE2), tritium clean-up. Following the clean-up JET resumed normal operation and is currently undertaking a further D-T campaign (DTE3)

    Determination of tungsten sources in the JET-ILW divertor by spectroscopic imaging in the presence of a strong plasma continuum

    Get PDF
    The identification of the sources of atomic tungsten and the measurement of their radiation distribution in front of all plasma-facing components has been performed in JET with the help of two digital cameras with the same two-dimensional view, equipped with interference filters of different bandwidths centred on theW I (400.88 nm) emission line. A new algorithm for the subtraction of the continuum radiation was successfully developed and is now used to evaluate the W erosion even in the inner divertor region where the strong recombination emission is dominating over the tungsten emission. Analysis of W sputtering and W redistribution in the divertor by video imaging spectroscopy with high spatial resolution for three different magnetic configurations was performed. A strong variation of the emission of the neutral tungsten in toroidal direction and corresponding W erosion has been observed. It correlates strongly with the wetted area with a maximal W erosion at the edge of the divertor tile

    Investigation of deuterium trapping and release in the JET ITER-like wall divertor using TDS and TMAP

    Get PDF
    Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed both in 2013–2014 and 2011–2014 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Ion Beam Analysis (IBA) and Secondary Ion Mass Spectrometry (SIMS) data. The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers. This area resides deep in the scrape-off layer. Changes in plasma configurations between the first (2011–2012) and the second (2013–2014) JET-ILW campaign altered the material migration towards the inner and the outer divertor corner increasing the amount of deposition in the shadowed areas of the divertor base tiles. D retention on the outer divertor tiles is clearly smaller than on the inner divertor tiles. Experimental TDS spectra for samples from the top part of inner divertor and from the outer strike point region were modelled using TMAP program. Experimental deuterium profiles obtained with SIMS have been used and the detrapping and the activation energies have been adjusted. Analysis of the results of the TMAP simulations enabled to determine the nature of traps in different sample

    EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field

    Get PDF
    EDGE2D-EIRENE (the ‘code’) simulations show that radial electric field, Er_{r}, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E×B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL Er_{r} was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E×B shear can be a player in the L–H transition physics (Delabie et al 2015 42nd EPS Conf. On Plasma Physics (Lisbon, Portugal, 22–26 June 2015) paper O3.113 (http://ocs.ciemat.es/ EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H–D–T) showed that the magnitude of the near SOL Er_{r} is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E×B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, Te_{e}, and SOL Er_{r}. The possibility of a self-feeding mechanism for the increase in the SOL Er_{r} via the interplay between poloidal E×B drift and target Te_{e} is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target Te_{e} and larger Er_{r}, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E×B shear in the SOL is capable of suppressing turbulence

    First mirror test in JET for ITER: Complete overview after three ILW campaigns

    Get PDF
    The First Mirror Test for ITER has been carried out in JET with mirrors exposed during: (i) the third ILW campaign (ILW-3, 2015–2016, 23.33 h plasma) and (ii) all three campaigns, i.e. ILW-1 to ILW-3: 2011–2016, 63,52 h in total. All mirrors from main chamber wall show no significant changes of the total reflectivity from the initial value and the diffuse reflectivity does not exceed 3% in the spectral range above 500 nm. The modified layer on surface has very small amount of impurities such as D, Be, C, N, O and Ni. All mirrors from the divertor (inner, outer, base under the bulk W tile) lost reflectivity by 20–80% due to the beryllium-rich deposition also containing D, C, N, O, Ni and W. In the inner divertor N reaches 5×1017^{17} cm2^{-2}, W is up to 4.3×1017^{17} cm2^{-2}, while the content of Ni is the greatest in the outer divertor: 3.8×1017^{17} cm2^{-2}. Oxygen-18 used as the tracer in experiments at the end of ILW-3 has been detected at the level of 1.1×1016^{16} cm2^{-2}. The thickness of deposited layer is in the range of 90 nm to 900 nm. The layer growth rate in the base (2.7 pm s1^{-1}) and inner divertor is proportional to the exposure time when a single campaign and all three are compared. In a few cases, on mirrors located at the cassette mouth, flaking of deposits and erosion occurred
    corecore