14 research outputs found

    Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains

    Get PDF
    Copyright 2011 Elsevier B.V., All rights reserved.The CMAQ modeling system has been used to simulate the air quality for North America and Europe for the entire year of 2006 as part of the Air Quality Model Evaluation International Initiative (AQMEII). The operational model performance of tropospheric ozone (O), fine particulate matter (PM) and total particulate matter (PM) for the two continents has been assessed. The model underestimates daytime (8am-8pm LST) O mixing ratios by 13% in the winter for North America, primarily due to an underestimation of daytime O mixing ratios in the middle and lower troposphere from the lateral boundary conditions. The model overestimates winter daytime O mixing ratios in Europe by an average of 8.4%. The model underestimates daytime O by 4-5% in the spring for both continents, while in the summer daytime O is overestimated by 9.8% for North America and slightly underestimated by 1.6% for Europe. The model overestimates daytime O in the fall for both continents, grossly overestimating daytime O by over 30% for Europe. The performance for PM varies both seasonally and geographically for the two continents. For North American, PM is overestimated in the winter and fall, with an average Normalized Mean Bias (NMB) greater than -30%, while performance in the summer is relatively good, with an average NMB of -4.6%. For Europe, PM is underestimated throughout the entire year, with the NMB ranging from -24% in the fall to -55% in the winter. PM is underestimated throughout the year for both North America and Europe, with remarkably similar performance for both continents. The domain average NMB for PM ranges between -45% and -65% for the two continents, with the largest underestimation occurring in the summer for North American and the winter for Europe.Peer reviewedSubmitted Versio

    Evaluating the capability of regional-scale air quality models to cature the vertical distribution of pollutants

    Get PDF
    This study is conducted in the framework of the Air Quality Modelling Evaluation International Initiative (AQMEII) and aims at the operational evaluation of an ensemble of 12 regional-scale chemical transport models used to predict air quality over the North American (NA) and European (EU) continents for 2006. The modelled concentrations of ozone and CO, along with the meteorological fields of wind speed (WS) and direction (WD), temperature (T), and relative humidity (RH), are compared against high-quality in-flight measurements collected by instrumented commercial aircraft as part of the Measurements of OZone, water vapour, carbon monoxide and nitrogen oxides by Airbus In-service airCraft (MOZAIC) programme. The evaluation is carried out for five model domains positioned around four major airports in NA (Portland, Philadelphia, Atlanta, and Dallas) and one in Europe (Frankfurt), from the surface to 8.5 km. We compare mean vertical profiles of modelled and measured variables for all airports to compute error and variability statistics, perform analysis of altitudinal error correlation, and examine the seasonal error distribution for ozone, including an estimation of the bias introduced by the lateral boundary conditions (BCs). The results indicate that model performance is highly dependent on the variable, location, season, and height (e.g. surface, planetary boundary layer (PBL) or free troposphere) being analysed. While model performance for T is satisfactory at all sites (correlation coefficient in excess of 0.90 and fractional bias ≀ 0.01 K), WS is not replicated as well within the PBL (exhibiting a positive bias in the first 100 m and also underestimating observed variability), while above 1000 m, the model performance improves (correlation coefficient often above 0.9). The WD at NA airports is found to be biased in the PBL, primarily due to an overestimation of westerly winds. RH is modelled well within the PBL, but in the free troposphere large discrepancies among models are observed, especially in EU. CO mixing ratios show the largest range of modelled-to-observed standard deviations of all the examined species at all heights and for all airports. Correlation coefficients for CO are typically below 0.6 for all sites and heights, and large errors are present at all heights, particularly in the first 250 m. Model performance for ozone in the PBL is generally good, with both bias and error within 20%. Profiles of ozone mixing ratios depend strongly on surface processes, revealed by the sharp gradient in the first 2 km (10 to 20 ppb km−1). Modelled ozone in winter is biased low at all locations in the NA, primarily due to an underestimation of ozone from the BCs. Most of the model error in the PBL is due to surface processes (emissions, transport, photochemistry), while errors originating aloft appear to have relatively limited impact on model performance at the surface. Suggestions for future work include interpretation of the model-to-model variability and common sources of model bias, and linking CO and ozone bias to the bias in the meteorological fields. Based on the results from this study, we suggest possible in-depth, process-oriented and diagnostic investigations to be carried out next

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Diabetes mellitus: pathophysiological changes and therap

    Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US

    No full text
    Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2× sulfate, RN=2S ≈0.8 to 0.9) with approximately 70% of total ammonia and ammonium (NHx) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in ÎŒgm-3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid-liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic-organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH=1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C≄0.6) compounds including several isoprene-derived tracers as well as levoglu-cosan but decrease particle-phase partitioning for low O: C, monoterpene-derived species

    Measurement of the isolated photon cross section in p(p)over-bar collisions at root s = 1.96 TeV (erratum: vol 639, pg 151, 2006)

    Get PDF
    Contains fulltext : 72018.pdf (preprint version ) (Open Access)5 p

    Catalogue of terrestrial isopods (Crustacea, Isopoda, Oniscidea) from Brazil: an update with some considerations

    No full text
    corecore