181 research outputs found

    Chest CT in patients after lung transplantation: A retrospective analysis to evaluate impact on image quality and radiation dose using spectral filtration tin-filtered imaging.

    Get PDF
    OBJECTIVES: The purpose of this study was to investigate the impact of a 150kV spectral filtration chest imaging protocol (Sn150kVp) combined with advanced modeled iterative reconstruction (ADMIRE) on radiation dose and image quality in patients after lung-transplantation. METHODS: This study included 102 patients who had unenhanced chest-CT examinations available on both, a second-generation dual-source CT (DSCT) using standard protocol (100kVp, filtered-back-projection) and, on a third-generation DSCT using Sn150kVp protocol with ADMIRE. Signal-to-noise-ratio (SNR) was measured in 6 standardized regions. A 5-point Likert scale was used to evaluate subjective image quality. Radiation metrics were compared. RESULTS: The mean time interval between the two acquisitions was 1.1±0.7 years. Mean-volume-CT-dose-index, dose-length-product and effective dose were significantly lower for Sn150kVp protocol (2.1±0.5mGy;72.6±16.9mGy*cm;1.3±0.3mSv) compared to 100kVp protocol (6.2±1.8mGy;203.6±55.6mGy*cm;3.7±1.0mSv) (p<0.001), equaling a 65% dose reduction. All studies were considered of diagnostic quality. SNR measured in lung tissue, air inside trachea, vertebral body and air outside the body was significantly higher in 100kVp protocol compared to Sn150kVp protocol (12.5±2.7vs.9.6±1.5;17.4±3.6vs.11.8±1.8;0.7±0.3vs.0.4±0.2;25.2±6.9vs.14.9±3.3;p<0.001). SNR measured in muscle tissue was significantly higher in Sn150kVp protocol (3.2±0.9vs.2.6±1.0;p<0.001). For SNR measured in descending aorta there was a trend towards higher values for Sn150kVp protocol (2.8±0.6 vs. 2.7±0.9;p = 0.3). Overall SNR was significantly higher in 100kVp protocol (5.0±4.0vs.4.0±4.0;p<0.001). On subjective analysis both protocols achieved a median Likert rating of 1 (25th-75th-percentile:1-1;p = 0.122). Interobserver agreement was good (intraclass correlation coefficient = 0.73). CONCLUSIONS: Combined use of 150kVp tin-filtered chest CT protocol with ADMIRE allows for significant dose reduction while maintaining highly diagnostic image quality in the follow up after lung transplantation when compared to a standard chest CT protocol using filtered back projection

    4D perfusion CT of prostate cancer for image-guided radiotherapy planning: A proof of concept study.

    Get PDF
    PURPOSE: Advanced forms of prostate cancer (PCa) radiotherapy with either external beam therapy or brachytherapy delivery techniques aim for a focal boost and thus require accurate lesion localization and lesion segmentation for subsequent treatment planning. This study prospectively evaluated dynamic contrast-enhanced computed tomography (DCE-CT) for the detection of prostate cancer lesions in the peripheral zone (PZ) using qualitative and quantitative image analysis compared to multiparametric magnet resonance imaging (mpMRI) of the prostate. METHODS: With local ethics committee approval, 14 patients (mean age, 67 years; range, 57-78 years; PSA, mean 8.1 ng/ml; range, 3.5-26.0) underwent DCE-CT, as well as mpMRI of the prostate, including standard T2, diffusion-weighted imaging (DWI), and DCE-MRI sequences followed by transrectal in-bore MRI-guided prostate biopsy. Maximum intensity projections (MIP) and DCE-CT perfusion parameters (CTP) were compared between healthy and malignant tissue. Two radiologists independently rated image quality and the tumor lesion delineation quality of PCa using a five-point ordinal scale. MIP and CTP were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis. RESULTS: The PCa detection rate ranged between 57 to 79% for the two readers for DCE-CT and was 92% for DCE-MRI. DCE-CT perfusion parameters in PCa tissue in the PZ were significantly different compared to regular prostate tissue and benign lesions. Image quality and lesion visibility were comparable between DCE-CT and DCE-MRI (VGC: AUC 0.612 and 0.651, p>0.05). CONCLUSION: Our preliminary results suggest that it is feasible to use DCE-CT for identification and visualization, and subsequent segmentation for focal radiotherapy approaches to PCa

    Predictive Value of Cardiac CTA, Cardiac MRI, and Transthoracic Echocardiography for Cardioembolic Stroke Recurrence

    Get PDF
    Background: Transthoracic echocardiography (TTE) is the standard of care for initial evaluation of patients with suspected cardioembolic stroke. While TTE is useful for assessing certain sources of cardiac emboli, its diagnostic capability is limited in the detection of other sources, including left atrial thrombus and aortic plaques. Objectives: To investigate sensitivity, specificity and predictive value of cardiac CT angigography (cCTA), cardiac MRI (CMR), and TTE for recurrence in patients with suspected cardioembolic stroke. Methods: We retrospectively included 151 patients with suspected cardioembolic stroke who underwent TTE and either CMR (n=75) or cCTA (n=76) between January 2013 and May 2017. We evaluated for presence of left atrial thrombus, left ventricular thrombus, vulnerable aortic plaque, cardiac tumors, and valvular vegetation as causes of cardioembolic stroke. The end-point was stroke recurrence. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for recurrent stroke were calculated; the diagnostic accuracy of CMR, cCTA, and TTE was compared between and within groups using area under the curves (AUCs). Results: Twelve and 14 recurrent strokes occurred in the cCTA and CMR groups, respectively. Sensitivity, specificity, PPV and NPV were: 33.3%, 93.7%, 50.0%, and 88.2% for cCTA; 14.3%, 80.3%, 14.3%, and 80.3% for CMR; 14.3%, 83.6%, 16.7%, 80.9% for TTE in the CMR group, and 8.3%, 93.7%, 20.0% and 84.5% for TTE in the cCTA group. Accuracy was not different (p&gt;0.05) between cCTA (0.63, 95% CI [0.49, 0.77]), CMR (0.53, [0.42, 0.63]), TTE in CMR group (0.51, [0.40, 0.61], and TTE in cCTA group (0.51, [0.42, 0.59]). In cCTA group, atrial and ventricular thrombus were detected by cCTA in 3 patients and TTE in 1 patient; in CMR group, thrombus was detected by CMR in 1 patient and TTE in 2 patients. Conclusion: cCTA, CMR, and TTE showed comparably high specificity and NPV for cardioembolic stroke recurrence. cCTA and CMR may be valid alternatives to TTE. cCTA may be preferred given potentially better detection of atrial and ventricular thrombus. Clinical impact: cCTA and CMR have similar clinical performance as TTE for predicting cardioembolic stroke recurrence. This observation may be especially important when TTE provides equivocal findings

    Quantitative analysis of dynamic computed tomography angiography for the detection of endoleaks after abdominal aorta aneurysm endovascular repair:A feasibility study

    Get PDF
    ObjectivesTo assess the feasibility of quantitative analysis of dynamic computed tomography angiography (dCTA) for the detection of endoleaks in patients who underwent endovascular repair of abdominal aortic aneurysms (EVAR).Material and methodsTwenty patients scheduled for contrast-enhanced CT angiography (CTA) of the abdominal aorta post-EVAR were prospectively enrolled. All patients received a standard triphasic CTA protocol, followed by an additional dCTA. The dCTA acquisition enabled reconstruction of color-coded maps depicting blood perfusion and a dCTA dataset of the aneurysm sac. Observers assessed the dCTA and dynamic CT perfusion (dCTP) images for the detection of endoleaks, establishing diagnostic confidence based on a modified 5-point Likert scale. An index was calculated for the ratio between the endoleak and aneurysm sac using blood flow for dCTP and Hounsfield units (HU) for dCTA. The Wilcoxon test compared the endoleak index and the diagnostic confidence of the observers.ResultsIn total, 19 patients (18 males, median age 74 years [70.5-75.7]) were included for analysis. Nine endoleaks were detected in 7 patients using triphasic CTA as the reference standard. There was complete agreement for endoleak detection between the two techniques on a per-patient basis. Both dCTA and dCTP identified an additional endoleak in one patient. The diagnostic confidence using dCTP for detection of endoleaks was not significantly superior to dCTA (5.0 [5-5] vs. 4.5 [4-5], respectively; p = 0.11); however, dCTP demonstrated superior diagnostic confidence for endoleak exclusion compared to dCTA (1.0 [1-1] vs 1.5 [1.5-1.5], respectively; p ConclusionsQuantitative analysis of dCTP imaging can aid in the detection of endoleaks and demonstrates a higher endoleak detection rate than triphasic CTA, as well as a strong correlation with visual assessment of dCTA images

    Pediatric radius torus fractures in x-rays—how computer vision could render lateral projections obsolete

    Get PDF
    It is an indisputable dogma in extremity radiography to acquire x-ray studies in at least two complementary projections, which is also true for distal radius fractures in children. However, there is cautious hope that computer vision could enable breaking with this tradition in minor injuries, clinically lacking malalignment. We trained three different state-of-the-art convolutional neural networks (CNNs) on a dataset of 2,474 images: 1,237 images were posteroanterior (PA) pediatric wrist radiographs containing isolated distal radius torus fractures, and 1,237 images were normal controls without fractures. The task was to classify images into fractured and non-fractured. In total, 200 previously unseen images (100 per class) served as test set. CNN predictions reached area under the curves (AUCs) up to 98% [95% confidence interval (CI) 96.6%–99.5%], consistently exceeding human expert ratings (mean AUC 93.5%, 95% CI 89.9%–97.2%). Following training on larger data sets CNNs might be able to effectively rule out the presence of a distal radius fracture, enabling to consider foregoing the yet inevitable lateral projection in children. Built into the radiography workflow, such an algorithm could contribute to radiation hygiene and patient comfort

    High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    Get PDF
    Objective: To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods: One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared.Results: The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions: CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses

    Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons

    Get PDF
    The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced (mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants. Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses. Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting
    • …
    corecore