101 research outputs found

    Can new generations explain neutrino masses?

    Get PDF
    In this talk we explore the possibility that the smallness of the observed neutrino masses is naturally understood in a modified version of the standard model with N extra generations of fermions and N right-handed neutrinos, in which light neutrino masses are generated at two loops. We find that with N = 1 it is not possible to fit the observed spectrum of masses and mixings while with N = 2 it is. Within this extension, we analyse the parameters which are allowed and the possible phenomenological signals of the model in future experiments. Contribution to the proceedings of Les Rencontres de Moriond EW 2011, Young Scientist Forum

    A model for right-handed neutrino magnetic moments

    Get PDF
    A simple extension of the Standard Model providing Majorana magnetic moments to right-handed neutrinos is presented. The model contains, in addition to the Standard Model particles and right-handed neutrinos, just a singly charged scalar and a vector-like charged fermion. The phenomenology of the model is analysed and its implications in cosmology, astrophysics and lepton flavour violating processes are extracted. If light enough, the charged particles responsible for the right-handed neutrino magnetic moments could copiously be produced at the LHC.Comment: 16 pages, 5 figure

    On the nature of the fourth generation neutrino and its implications

    Get PDF
    We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth generation neutrinos.Comment: To be published. Few typos corrected, references update

    Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival

    Full text link
    [EN] Purpose: To determine if preoperative vascular heterogeneity of glioblastoma is predictive of overall survival of patients undergoing standard-of-care treatment by using an unsupervised multiparametric perfusion-based habitat-discovery algorithm. Materials and Methods: Preoperative magnetic resonance (MR) imaging including dynamic susceptibility-weighted contrast material-enhanced perfusion studies in 50 consecutive patients with glioblastoma were retrieved. Perfusion parameters of glioblastoma were analyzed and used to automatically draw four reproducible habitats that describe the tumor vascular heterogeneity: high-angiogenic and low-angiogenic regions of the enhancing tumor, potentially tumor-infiltrated peripheral edema, and vasogenic edema. Kaplan-Meier and Cox proportional hazard analyses were conducted to assess the prognostic potential of the hemodynamic tissue signature to predict patient survival. Results: Cox regression analysis yielded a significant correlation between patients' survival and maximum relative cerebral blood volume (rCBV(max)) and maximum relative cerebral blood flow (rCBF(max)) in high-angiogenic and low-angiogenic habitats (P < .01, false discovery rate-corrected P < .05). Moreover, rCBF(max) in the potentially tumor-infiltrated peripheral edema habitat was also significantly correlated (P < .05, false discovery rate-corrected P < .05). Kaplan-Meier analysis demonstrated significant differences between the observed survival of populations divided according to the median of the rCBV(max) or rCBF(max) at the high-angiogenic and low-angiogenic habitats (log-rank test P < .05, false discovery rate-corrected P < .05), with an average survival increase of 230 days. Conclusion: Preoperative perfusion heterogeneity contains relevant information about overall survival in patients who undergo standard-of-care treatment. The hemodynamic tissue signature method automatically describes this heterogeneity, providing a set of vascular habitats with high prognostic capabilities.Study supported by H2020 European Institute of Innovation and Technology (POC-2016.SPAIN-07) and Universitat Politecnica de Valencia (PAID-10-14). J.J.A., E.F.G., and J.M.G.G. supported by Secretaria de Estado de Investigacion, Desarrollo e Innovacion (DPI2016-80054-R, TIN2013-43457-R). E.F.G. supported by CaixaImpulse program from Fundacio Bancaria "la Caixa" (LCF/TR/CI16/10010016). E.F.G and A.A.B. supported by the Universitat Politecnica de Valencia Instituto Investigacion Sanitaria de La Fe (C05).Juan -Albarracín, J.; Fuster García, E.; Pérez-Girbés, A.; Aparici-Robles, F.; Alberich Bayarri, A.; Revert Ventura, AJ.; Martí Bonmatí, L.... (2018). Glioblastoma: Vascular Habitats Detected at Preoperative Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging Predict Survival. Radiology. 287(3):944-954. https://doi.org/10.1148/radiol.2017170845S944954287
    corecore