12 research outputs found

    Exploring the putative role of kallikrein-6, calpain-1 and cathepsin-D in the proteolytic degradation of α-synuclein in multiple system atrophy

    Get PDF
    AIMS: There is evidence that accumulation of α-synuclein (α-syn) in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) results from impaired removal of α-syn rather than its overproduction. Kallikrein-6 (KLK6), calpain-1 (CAPN1) and cathepsin-D (CTSD) are among a small number of proteases that cleave α-syn and are dysregulated in PD and DLB. Our aim in this study was to determine whether protease activity is altered in another α-synucleinopathy, multiple system atrophy (MSA), and might thereby modulate the regional distribution of α-syn accumulation. METHODS: mRNA and protein level and/or activity of KLK6, CAPN1 and CTSD were measured and assessed in relation to α-syn load in multiple brain regions (posterior frontal cortex, caudate nucleus, putamen, occipital cortex, pontine base and cerebellar white matter), in MSA (n = 20) and age-matched post-mortem control tissue (n = 20). RESULTS: CTSD activity was elevated in MSA in the pontine base and cerebellar white matter. KLK6 and CAPN1 levels were elevated in MSA in the putamen and cerebellar white matter. However, the activity or level of these proteolytic enzymes did not correlate with the regional distribution of α-syn. CONCLUSIONS: Accumulation of α-syn in MSA is not due to reduced activity of the proteases we have studied. We suggest that their upregulation is likely to be a compensatory response to increased α-syn in MSA. This article is protected by copyright. All rights reserved

    Coenzyme Q10 Levels Are Decreased in the Cerebellum of Multiple-System Atrophy Patients

    Get PDF
    Background: The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases. Methods: Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson's disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography. Results: We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson's disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)]. Conclusion: Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated

    P071 The mesentery in Crohn\u27s disease displays mesenchymal abnormalities.

    No full text
    Background: Recent advances in our understanding of mesenteric anatomy have shown that the mesentery is continuous along the intestinal tract at vascular, lymphatic and connective tissue levels [1]. Thus, the mesentery represents a conduit which may propagate disease [2]. This study aimed to investigate abnormalities of the mesentery in Crohn\u27s disease (CD) at a histological level.ACCEPTEDpeer-reviewe

    A 6.4 Mb Duplication of the α-Synuclein Locus Causing Frontotemporal Dementia and Parkinsonism:Phenotype-Genotype Correlations

    No full text
    IMPORTANCE: SNCA locus duplications are associated with variable clinical features and reduced penetrance but the reasons underlying this variability are unknown. OBJECTIVE: 1) To report a novel family carrying a heterozygous 6.4Mb duplication of the SNCA locus with an atypical clinical presentation strongly reminiscent of frontotemporal dementia (FTD) and late-onset pallidopyramidal syndromes. 2) To study phenotype-genotype correlations in SNCA locus duplications. DESIGN, SETTING, PARTICIPANTS AND DATA SOURCES: We report the clinical and neuropathologic features of a family carrying a 6.4Mb duplication of the SNCA locus. To identify candidate disease modifiers, we undertake a genetic analysis in the family and conduct statistical analysis on previously published cases carrying SNCA locus duplication using regression modelling with robust standard errors to account for clustering at the family level. MAIN OUTCOME MEASURES: To assess whether length of the SNCA locus duplication influences disease penetrance and severity, and whether extra-duplication factors have a disease-modifying role. RESULTS: We identified a large 6.4Mb duplication of the SNCA locus in this family. Neuropathological analysis showed extensive α-synuclein pathology with minimal phospho-tau pathology. Genetic analysis showed an increased burden of PD-related risk factors and the disease-predisposing H1/H1 MAPT haplotype. Statistical analysis of previously published cases suggested that there is a trend towards increasing disease severity and disease penetrance with increasing duplication size. The corresponding odds ratios (95% CI) from the univariate analyses were 1.17 (0.81 to 1.68) and 1.34 (0.78 to 2.31) respectively. Gender was significantly associated with both disease risk and severity; males compared to females had increased disease risk and severity and the corresponding odds ratios (95% CI) from the univariate analyses were 8.36 (1.97 to 35.42) and 5.55 (1.39 to 22.22) respectively. CONCLUSIONS AND RELEVANCE: These findings further expand the phenotypic spectrum of SNCA locus duplications. Increased dosage of genes located within the duplicated region probably cannot increase disease risk and disease severity without the contribution of additional risk factors. Identification of disease modifiers accounting for the substantial phenotypic heterogeneity of patients with SNCA locus duplications could provide insight into molecular events involved in α-synuclein aggregation

    P026 The role of fibrocytes in mesenteric Crohn's disease.

    No full text
    The mesentery in Crohn’s disease frequently displays disease manifestations, such as mesenteric thickening and fat wrapping. Fibrocytes are a precursor cell type that can differentiate into fibroblasts or adipocytes [1]. They have previously been identified in the mesentery in inflammatory conditions such as mesenteric panniculitis [2]. This study aimed to investigate the role of fibrocytes in Crohn’s mesenteric disease manifestations

    LRRK2 exonic variants and risk of multiple system atrophy.

    No full text
    OBJECTIVE: The aim of this study was to evaluate the association between common exonic variants in the leucine-rich repeat kinase 2 (LRRK2) gene and risk of multiple system atrophy (MSA). METHODS: One series from the United States (92 patients with pathologically confirmed MSA, 416 controls) and a second series from the United Kingdom (85 patients with pathologically confirmed MSA, 352 controls) were included in this case-control study. We supplemented these data with those of 53 patients from the United States with clinically probable or possible MSA. Seventeen common LRRK2 exonic variants were genotyped and assessed for association with MSA. RESULTS: In the combined series of 177 patients with pathologically confirmed MSA and 768 controls, there was a significant association between LRRK2 p.M2397T and MSA (odds ratio [OR] = 0.60, p = 0.002). This protective effect was observed more strongly in the US series (OR = 0.46, p = 0.0008) than the UK series (OR = 0.82, p = 0.41). We observed other noteworthy associations with MSA for p.G1624G (OR = 0.63, p = 0.006) and p.N2081D (OR = 0.15, p = 0.010). The p.G1624G-M2397T haplotype was significantly associated with MSA in the US series (p < 0.0001) and combined series (p = 0.003) but not the UK series (p = 0.67). Results were consistent when additionally including the US patients with clinical MSA, where the strongest single-variant association was again observed for p.M2397T (OR = 0.59, p = 0.0005). CONCLUSIONS: These findings provide evidence that LRRK2 exonic variants may contribute to susceptibility to MSA. Validation in other series and meta-analytic studies will be important
    corecore